Middle

Creating Inclusive PreK–12 STEM Learning Environments

Brief CoverBroadening participation in PreK–12 STEM provides ALL students with STEM learning experiences that can prepare them for civic life and the workforce.

Author/Presenter

Malcom Butler

Cory Buxton

Odis Johnson Jr.

Leanne Ketterlin-Geller

Catherine McCulloch

Natalie Nielsen

Arthur Powell

Year
2018
Short Description

This brief offers insights from National Science Foundation-supported research for education leaders and policymakers who are broadening participation in science, technology, engineering, and/or mathematics (STEM). Many of these insights confirm knowledge that has been reported in research literature; however, some offer a different perspective on familiar challenges.

Teachers’ Pedagogical Content Knowledge in Mathematics and Science A Cross-Disciplinary Synthesis of Recent DRK-12 Projects

This review synthesized insights from 27 NSF-funded projects, totaling $62 million, that studied pedagogical content knowledge (PCK) in STEM education from prekindergarten (PreK) to Grade 12, split roughly equally across mathematics and science education. The projects primarily applied correlational/observational and longitudinal methods, often targeted teaching in the middle school grades, and used a wide variety of approaches to measure teachers’ PCK.

Author/Presenter

David Miller

Isabella Pinerua

Jonathan Margolin

Dean Gerdeman

Year
2022
Short Description

This review synthesized insights from 27 NSF-funded projects, totaling $62 million, that studied pedagogical content knowledge (PCK) in STEM education from prekindergarten (PreK) to Grade 12, split roughly equally across mathematics and science education. The projects primarily applied correlational/observational and longitudinal methods, often targeted teaching in the middle school grades, and used a wide variety of approaches to measure teachers’ PCK. The projects advanced substantive knowledge about PCK across four major lines of research, especially regarding the measurement and development of PCK.

Modeling in Science Education: A Synthesis of Recent Discovery Research PreK-12 Projects

This review synthesizes findings from 18 NSF-funded projects, totaling nearly $22 million, that studied scientific modeling in science education from prekindergarten to Grade 12. The projects typically used descriptive designs to understand digital and nondigital modeling resources that help students explore scientific phenomena. Further, the projects provide initial evidence that resources supporting student modeling, such as modeling platforms and computer simulations, can promote science learning.

Key Findings

Author/Presenter

Jonathan Margolin

Isabella Pinerua

Dean Gerdeman

Year
2022
Short Description

This review synthesizes findings from 18 NSF-funded projects, totaling nearly $22 million, that studied scientific modeling in science education from prekindergarten to Grade 12. The projects typically used descriptive designs to understand digital and nondigital modeling resources that help students explore scientific phenomena. Further, the projects provide initial evidence that resources supporting student modeling, such as modeling platforms and computer simulations, can promote science learning.

Mathematical and Scientific Argumentation in PreK-12: A Cross-Disciplinary Synthesis of Recent DRK-12 Projects

This review synthesizes insights from 23 NSF-funded projects, totaling $40 million, that studied mathematical and scientific argumentation in STEM education from prekindergarten (PreK) to Grade 12. The projects reported on both studies of argumentation interventions and naturalistic observations in “business-as-usual” settings. The projects advanced substantive knowledge about how to support student argumentation.

Author/Presenter

Eben Witherspoon

David Miller

Isabella Pinerua

Dean Gerdeman

Year
2022
Short Description

This review synthesizes insights from 23 NSF-funded projects, totaling $40 million, that studied mathematical and scientific argumentation in STEM education from prekindergarten (PreK) to Grade 12. The projects reported on both studies of argumentation interventions and naturalistic observations in “business-as-usual” settings. The projects advanced substantive knowledge about how to support student argumentation. In particular, the projects highlighted the importance of making an argument’s structure explicit and facilitating student-to-student discourse, especially with technological tools.

“Science Theatre Makes You Good at Science”: Affordances of Embodied Performances in Urban Elementary Science Classrooms

School science continues to alienate students identifying with nondominant, non-western cultures, and learners of color, and considers science as an enterprise where success necessitates divorcing the self and corporeal body from ideas and the mind. Resisting the colonizing pedagogy of the mind–body divide, we aimed at creating pedagogical spaces and places in science classes that sustain equitable opportunities for engagement and meaning making where body and mind are enmeshed.

Author/Presenter

Maria Varelas

Rebecca T. Kotler

Hannah D. Natividad

Nathan C. Phillips

Rachelle P. Tsachor

Rebecca Woodard

Marcie Gutierrez

Miguel A. Melchor

Maria Rosario

Year
2021
Short Description

School science continues to alienate students identifying with nondominant, non-western cultures, and learners of color, and considers science as an enterprise where success necessitates divorcing the self and corporeal body from ideas and the mind. Resisting the colonizing pedagogy of the mind–body divide, we aimed at creating pedagogical spaces and places in science classes that sustain equitable opportunities for engagement and meaning making where body and mind are enmeshed. In the context of a partnership between school- and university-based educators and researchers, we explored how multimodal literacies cultivated through the performing arts, provide students from minoritized communities opportunities to both create knowledge and to position themselves as science experts and brilliant and creative meaning makers.

From Professional Development to Native Nation Building: Opening Up Space for Leadership, Relationality, and Self-Determination through the Diné Institute for Navajo Nation Educators

Many of us have multiple stories that would be appropriate to tell given the theme of this Special Issue. I am compelled to tell a story about my work with teachers, teacher leaders, and other allies on the Navajo Nation. The Diné Institute for Navajo Nation Educators (DINÉ) was started by teacher leaders who envisioned a collaborative professional development institute specifically for K12 teachers on the Navajo Nation.
Author/Presenter

Angelina E. Castagno

Lead Organization(s)
Year
2021
Short Description

Many of us have multiple stories that would be appropriate to tell given the theme of this Special Issue. I am compelled to tell a story about my work with teachers, teacher leaders, and other allies on the Navajo Nation. The Diné Institute for Navajo Nation Educators (DINÉ) was started by teacher leaders who envisioned a collaborative professional development institute specifically for K12 teachers on the Navajo Nation. In their rural, Indigenous-serving schools, teachers are often asked to deliver scripted curriculum that is decontextualized, dehistoricized, and therefore, dehumanizing for their students, themselves, and their communities. Their vision for the DINÉ was developed and honed over many years in response to this context. In this essay, I will briefly describe the DINÉ, how and why it began, and its current status. I will focus on three critical spaces that have opened up in and through the DINÉ: teacher leadership, connection/relationality, and activism/self-determination. In reflecting on these three spaces, I suggest that our work in the DINÉ is fundamentally about Native Nation building.

Developing and Piloting a Tool to Assess Culturally Responsive Principles in Schools Serving Indigenous Students

This article presents a tool and discusses the rationale for the authors’ development of a tool designed to assess the alignment of culturally responsive schooling principles within schools serving predominantly U.S. Indigenous students.
Author/Presenter

Angelina Castagno

Darold H. Joseph

Hosava Kretzmannc

Pradeep M. Dass

Lead Organization(s)
Year
2021
Short Description

This article presents a tool and discusses the rationale for the authors’ development of a tool designed to assess the alignment of culturally responsive schooling principles within schools serving predominantly U.S. Indigenous students. Schools that serve a majority of Indigenous students are generally located on or bordering Native Nations that are federally recognized as being sovereign Nations with a government-to-government relationship to the federal government, so the more generic diversity, equity, and inclusion tools that currently exist are insufficient for the unique contexts of schools in Indian Country. Thus, we offer a tool that can be used to identify and strengthen the integration of culturally responsive principles specifically for, with, and in Indigenous-serving schools.

Resource(s)

CS-STEM Network

The CS-STEM Network offers research-based curricula created by Carnegie Mellon Robotics Academy that focus on teaching big ideas with robotics. Over 20 curriculum options provide support for LEGO, VEX, Arduino, and Virtual robot platforms in this Learning Management System.

Author/Presenter

The CS-STEM Network Team

Year
2022
Short Description

The CS-STEM Network offers research-based curricula created by Carnegie Mellon Robotics Academy that focus on teaching big ideas with robotics. Over 20 curriculum options provide support for LEGO, VEX, Arduino, and Virtual robot platforms in this Learning Management System.

CS-STEM Network

The CS-STEM Network offers research-based curricula created by Carnegie Mellon Robotics Academy that focus on teaching big ideas with robotics. Over 20 curriculum options provide support for LEGO, VEX, Arduino, and Virtual robot platforms in this Learning Management System.

Author/Presenter

The CS-STEM Network Team

Year
2022
Short Description

The CS-STEM Network offers research-based curricula created by Carnegie Mellon Robotics Academy that focus on teaching big ideas with robotics. Over 20 curriculum options provide support for LEGO, VEX, Arduino, and Virtual robot platforms in this Learning Management System.

Beyond the Basics: A Detailed Conceptual Framework of Integrated STEM

Given the large variation in conceptualizations and enactment of K-12 integrated STEM, this paper puts forth a detailed conceptual framework for K-12 integrated STEM education that can be used by researchers, educators, and curriculum developers as a common vision.

Author/Presenter

Gillian H. Roehrig

Emily A. Dare

Joshua A. Ellis

Elizabeth Ring-Whalen

Year
2021
Short Description

This paper puts forth a detailed conceptual framework for K-12 integrated STEM education that can be used by researchers, educators, and curriculum developers as a common vision