Dissemination Toolkit: Social Media Outreach
It seems like there are new tech and social media tools coming out every day. So what’s out there? And how can these tools be used to enhance your work?
It seems like there are new tech and social media tools coming out every day. So what’s out there? And how can these tools be used to enhance your work?
In successful peer discussions students respond to each other and benefit from supports that focus discussion on one another’s ideas. We explore using artificial intelligence (AI) to form groups and guide peer discussion for grade 7 students. We use natural language processing (NLP) to identify student ideas in science explanations. The identified ideas, along with Knowledge Integration (KI) pedagogy, informed the design of a question bank to support students during the discussion. We compare groups formed by maximizing the variety of ideas among participants to randomly formed groups.
We use natural language processing (NLP) to identify student ideas in science explanations. The identified ideas, along with Knowledge Integration (KI) pedagogy, informed the design of a question bank to support students during the discussion. We compare groups formed by maximizing the variety of ideas among participants to randomly formed groups.
In successful peer discussions students respond to each other and benefit from supports that focus discussion on one another’s ideas. We explore using artificial intelligence (AI) to form groups and guide peer discussion for grade 7 students. We use natural language processing (NLP) to identify student ideas in science explanations. The identified ideas, along with Knowledge Integration (KI) pedagogy, informed the design of a question bank to support students during the discussion. We compare groups formed by maximizing the variety of ideas among participants to randomly formed groups.
We use natural language processing (NLP) to identify student ideas in science explanations. The identified ideas, along with Knowledge Integration (KI) pedagogy, informed the design of a question bank to support students during the discussion. We compare groups formed by maximizing the variety of ideas among participants to randomly formed groups.
With the widespread adoption of the Next Generation Science Standards (NGSS), science teachers and online learning environments face the challenge of evaluating students’ integration of different dimensions of science learning. Recent advances in representation learning in natural language processing have proven effective across many natural language processing tasks, but a rigorous evaluation of the relative merits of these methods for scoring complex constructed response formative assessments has not previously been carried out.
We present a detailed empirical investigation of feature-based, recurrent neural network, and pre-trained transformer models on scoring content in real-world formative assessment data. We demonstrate that recent neural methods can rival or exceed the performance of feature-based methods. We also provide evidence that different classes of neural models take advantage of different learning cues, and pre-trained transformer models may be more robust to spurious, dataset-specific learning cues, better reflecting scoring rubrics.
With the widespread adoption of the Next Generation Science Standards (NGSS), science teachers and online learning environments face the challenge of evaluating students’ integration of different dimensions of science learning. Recent advances in representation learning in natural language processing have proven effective across many natural language processing tasks, but a rigorous evaluation of the relative merits of these methods for scoring complex constructed response formative assessments has not previously been carried out.
We present a detailed empirical investigation of feature-based, recurrent neural network, and pre-trained transformer models on scoring content in real-world formative assessment data. We demonstrate that recent neural methods can rival or exceed the performance of feature-based methods. We also provide evidence that different classes of neural models take advantage of different learning cues, and pre-trained transformer models may be more robust to spurious, dataset-specific learning cues, better reflecting scoring rubrics.
This study takes advantage of advances in Natural Language Processing (NLP) to build an idea detection model that can identify ideas grounded in students’ linguistic experiences. We designed adaptive, interactive dialogs for four explanation items using the NLP idea detection model and investigated whether they similarly support students from distinct language backgrounds. The curriculum, assessments, and scoring rubrics were informed by the Knowledge Integration (KI) pedagogy.
This study takes advantage of advances in Natural Language Processing (NLP) to build an idea detection model that can identify ideas grounded in students’ linguistic experiences.
This study takes advantage of advances in Natural Language Processing (NLP) to build an idea detection model that can identify ideas grounded in students’ linguistic experiences. We designed adaptive, interactive dialogs for four explanation items using the NLP idea detection model and investigated whether they similarly support students from distinct language backgrounds. The curriculum, assessments, and scoring rubrics were informed by the Knowledge Integration (KI) pedagogy.
This study takes advantage of advances in Natural Language Processing (NLP) to build an idea detection model that can identify ideas grounded in students’ linguistic experiences.
This study leverages natural language processing (NLP) to deepen our understanding of how students integrate their ideas about genetic inheritance while engaging in an adaptive dialog.
This study leverages natural language processing (NLP) to deepen our understanding of how students integrate their ideas about genetic inheritance while engaging in an adaptive dialog.
Engineering projects, such as designing a solar farm that converts solar radiation shined on the Earth into electricity, engage students in addressing real-world challenges by learning and applying geoscience knowledge. To improve their designs, students benefit from frequent and informative feedback as they iterate. However, teacher attention may be limited or inadequate, both during COVID-19 and beyond. We present Aladdin, a web-based computer-aided design (CAD) platform for engineering design with a built-in artificial intelligence teaching assistant (AITA).
Engineering projects, such as designing a solar farm that converts solar radiation shined on the Earth into electricity, engage students in addressing real-world challenges by learning and applying geoscience knowledge. To improve their designs, students benefit from frequent and informative feedback as they iterate. However, teacher attention may be limited or inadequate, both during COVID-19 and beyond. We present Aladdin, a web-based computer-aided design (CAD) platform for engineering design with a built-in artificial intelligence teaching assistant (AITA). We also present two curriculum units (Solar Energy Science and Solar Farm Design), where students explore the Sun-Earth relationship and optimize the energy output and yearly profit of a solar farm with the help of the AITA.