Open Innovation Challenge to Mitigate Global Warming
Puttick, G., Drayton, B., & Gasca, S. (2023). Open innovation challenge to mitigate global warming. Connected Science Learning, 5(5).
Open innovation challenge to mitigate global warming.
Puttick, G., Drayton, B., & Gasca, S. (2023). Open innovation challenge to mitigate global warming. Connected Science Learning, 5(5).
Open innovation challenge to mitigate global warming.
The Innovate to Mitigate (I2M) project poses challenges for secondary-school students to design feasible, innovative strategies that mitigate CO2 emissions and thus global warming. Design is informed by research on problem-based learning, pedagogy for which poses demands on teachers. This paper presents preliminary evidence about how I2M teachers supported student teams to engage in science and engineering practices.
The Innovate to Mitigate (I2M) project poses challenges for secondary-school students to design feasible, innovative strategies that mitigate CO2 emissions and thus global warming. Design is informed by research on problem-based learning, pedagogy for which poses demands on teachers. This paper presents preliminary evidence about how I2M teachers supported student teams to engage in science and engineering practices.
The Innovate to Mitigate (I2M) project poses challenges for secondary-school students to design feasible, innovative strategies that mitigate CO2 emissions and thus global warming. Design is informed by research on problem-based learning, pedagogy for which poses demands on teachers. This paper presents preliminary evidence about how I2M teachers supported student teams to engage in science and engineering practices.
The Innovate to Mitigate (I2M) project poses challenges for secondary-school students to design feasible, innovative strategies that mitigate CO2 emissions and thus global warming. Design is informed by research on problem-based learning, pedagogy for which poses demands on teachers. This paper presents preliminary evidence about how I2M teachers supported student teams to engage in science and engineering practices.
Foregrounding climate education in formal science learning environments provides students with opportunities to develop critical climate-related knowledge and skills. However, research has shown many challenges to teaching and learning about Earth’s climate and global climate change (GCC). This longitudinal study aims to establish how secondary science teachers, over time, implement model-based climate curricula in support of students’ climate and GCC education by utilizing EzGCM. The model (EzGCM) is a data-driven, computer-based climate modeling tool use to explore global climate data.
Foregrounding climate education in formal science learning environments provides students with opportunities to develop critical climate-related knowledge and skills. However, research has shown many challenges to teaching and learning about Earth’s climate and global climate change (GCC). This longitudinal study aims to establish how secondary science teachers, over time, implement model-based climate curricula in support of students’ climate and GCC education by utilizing EzGCM. The model (EzGCM) is a data-driven, computer-based climate modeling tool use to explore global climate data.
Foregrounding climate education in formal science learning environments provides students with opportunities to develop critical climate-related knowledge and skills. However, research has shown many challenges to teaching and learning about Earth’s climate and global climate change (GCC). This longitudinal study aims to establish how secondary science teachers, over time, implement model-based climate curricula in support of students’ climate and GCC education by utilizing EzGCM. The model (EzGCM) is a data-driven, computer-based climate modeling tool use to explore global climate data.
Foregrounding climate education in formal science learning environments provides students with opportunities to develop critical climate-related knowledge and skills. However, research has shown many challenges to teaching and learning about Earth’s climate and global climate change (GCC). This longitudinal study aims to establish how secondary science teachers, over time, implement model-based climate curricula in support of students’ climate and GCC education by utilizing EzGCM. The model (EzGCM) is a data-driven, computer-based climate modeling tool use to explore global climate data.
The Innovate to Mitigate project adapts crowdsourcing to support project-based STEM education, posing design challenges for secondary-school students. Students are charged with designing feasible innovative strategies to mitigate CO2 emissions and thus global warming. The paper draws on data from 3 project teams. The paper presents evidence that a web-mediated community of practice supports STEM learning of concepts and STEM practices and examines conditions under which the environment can enable an account of microgenesis of that learning.
The Innovate to Mitigate project adapts crowdsourcing to support project-based STEM education, posing design challenges for secondary-school students. Students are charged with designing feasible innovative strategies to mitigate CO2 emissions and thus global warming. The paper draws on data from 3 project teams. The paper presents evidence that a web-mediated community of practice supports STEM learning of concepts and STEM practices and examines conditions under which the environment can enable an account of microgenesis of that learning.
Bhattacharya, D., Chandler, M., Carroll-Steward, K., & Forbes, C.T. (2020). Using climate models to learn about global climate change. The Science Teacher, 88(1), 58-66.
This article focuses on investigating the phenomenon of increasing surface air temperatures using a global climate modeling approach.
Bhattacharya, D., Chandler, M., Carroll-Steward, K., & Forbes, C.T. (2020). Using climate models to learn about global climate change. The Science Teacher, 88(1), 58-66.
This article focuses on investigating the phenomenon of increasing surface air temperatures using a global climate modeling approach.
Developing understanding about the Earth’s climate and the phenomenon of global climate change (GCC) is essential for all students, our future citizens and decision-makers. Recent implementation of the Next Generation Science Standards (NGSS) has intensified the focus on teaching and learning of the Earth’s climate and GCC in formal learning environments. Concurrently, the empirical research associated with climate education has also increased.
Recent implementation of the Next Generation Science Standards (NGSS) has intensified the focus on teaching and learning of the Earth’s climate and GCC in formal learning environments. Concurrently, the empirical research associated with climate education has also increased. We used an exhaustive, stepwise process to search for and identify relevant literature, systematically analyzing 178 empirical, peer-reviewed studies focused on climate literacy and education in formal K-16 settings.
Developing understanding about the Earth’s climate and the phenomenon of global climate change (GCC) is essential for all students, our future citizens and decision-makers. Recent implementation of the Next Generation Science Standards (NGSS) has intensified the focus on teaching and learning of the Earth’s climate and GCC in formal learning environments. Concurrently, the empirical research associated with climate education has also increased.
Recent implementation of the Next Generation Science Standards (NGSS) has intensified the focus on teaching and learning of the Earth’s climate and GCC in formal learning environments. Concurrently, the empirical research associated with climate education has also increased. We used an exhaustive, stepwise process to search for and identify relevant literature, systematically analyzing 178 empirical, peer-reviewed studies focused on climate literacy and education in formal K-16 settings.