Quantitative Reasoning in the Context of Science Phenomena
Over the last decade, reform in science education has placed an emphasis on the science practices as a way to engage students in the process of science and improve scientific literacy. A critical component of developing scientific literacy is learning to apply quantitative reasoning to authentic scientific phenomena and problems. Students need practice moving fluidly (or fluently) between math and science to develop a habit of mind that encourages the application of quantitative reasoning to real-world scenarios.
Over the last decade, reform in science education has placed an emphasis on the science practices as a way to engage students in the process of science and improve scientific literacy. A critical component of developing scientific literacy is learning to apply quantitative reasoning to authentic scientific phenomena and problems. Students need practice moving fluidly (or fluently) between math and science to develop a habit of mind that encourages the application of quantitative reasoning to real-world scenarios. Here we present a student-facing model that challenges students to think across these two fields.