Cognitive Science

Developing a Modeling Orientation to Science: Teaching and Learning Variability and Change in Ecosystems (Collaborative Research: Lehrer, Miller, and Peake)

Principal Investigator:

We are investigating the development of middle-schoolers' understandings and practices of modeling in the context of investigations of variability and change in ecosystems. We are studying how and to what extent students' participation in distinct forms of modeling informs their classroom-based citizen science investigations.

Click image to preview:
Target Audience:

Developing a Modeling Orientation to Science: Teaching and Learning Variability and Change in Ecosystems (Collaborative Research: Lehrer, Miller, and Peake)

Principal Investigator:

We are investigating the development of middle-schoolers' understandings and practices of modeling in the context of investigations of variability and change in ecosystems. We are studying how and to what extent students' participation in distinct forms of modeling informs their classroom-based citizen science investigations.

Click image to preview:
Target Audience:

Developing a Modeling Orientation to Science: Teaching and Learning Variability and Change in Ecosystems (Collaborative Research: Lehrer, Miller, and Peake)

Principal Investigator:

We are investigating the development of middle-schoolers' understandings and practices of modeling in the context of investigations of variability and change in ecosystems. We are studying how and to what extent students' participation in distinct forms of modeling informs their classroom-based citizen science investigations.

Click image to preview:
Target Audience:

Learning Trajectories as a Complete Early Mathematics Intervention: Achieving Efficacies of Economies at Scale

Principal Investigator:
The ULTIMATE (Understanding Learning Trajectories In Math: Advancing Teacher Education) project will evaluate Learning Trajectories as a complete early mathematics intervention by supporting teachers in deepening their understanding of how children learn mathematics and how to incorporate this understanding. Drs. Clements and Sarama have built a professional development tool, called Learning and Teaching with Learning Trajectories, or [LT]2. The team will investigate the positive impacts both in supporting teachers and on students' learning of mathematics.
Click image to preview:
Target Audience:

Developing Transmedia Engineering Curricula Using Cognitive Tools to Impact Learning and the Development of STEM Identity

This paper examines the use of Imaginative Education (IE) to create an NGSS-aligned middle school engineering curriculum that supports transfer and the development of STEM identity. In IE, cognitive tools—such as developmentally appropriate narratives, mysteries and fantasies—are used to design learning environments that both engage learners and help them organize knowledge productively. We have combined IE with transmedia storytelling to develop two multi-week engineering units and six shorter engineering lessons.

Author/Presenter

Glenn W. Ellis

Jeremiah Pina

Rebecca Mazur

Al Rudnitsky

Beth McGinnis-Cavanaugh

Isabel Huff

Sonia Ellis

Crystal M. Ford

Kate Lytton

Kaia Claire Cormier

Year
2020
Short Description

This paper examines the use of Imaginative Education (IE) to create an NGSS-aligned middle school engineering curriculum that supports transfer and the development of STEM identity.

Resource(s)

Developing Transmedia Engineering Curricula Using Cognitive Tools to Impact Learning and the Development of STEM Identity

This paper examines the use of Imaginative Education (IE) to create an NGSS-aligned middle school engineering curriculum that supports transfer and the development of STEM identity. In IE, cognitive tools—such as developmentally appropriate narratives, mysteries and fantasies—are used to design learning environments that both engage learners and help them organize knowledge productively. We have combined IE with transmedia storytelling to develop two multi-week engineering units and six shorter engineering lessons.

Author/Presenter

Glenn W. Ellis

Jeremiah Pina

Rebecca Mazur

Al Rudnitsky

Beth McGinnis-Cavanaugh

Isabel Huff

Sonia Ellis

Crystal M. Ford

Kate Lytton

Kaia Claire Cormier

Year
2020
Short Description

This paper examines the use of Imaginative Education (IE) to create an NGSS-aligned middle school engineering curriculum that supports transfer and the development of STEM identity.

Resource(s)

Empowering Students with Specific Learning Disabilities: Jim’s Concept of Unit Fraction

Cognitive differences have historically led to deficit assumptions concerning the mathematical experiences that children with learning disabilities (LD) can access. We argue that the problem can be located not within children but instead as a mismatch between features of instruction and children’s unique learning abilities. In this paper, we investigate how one elementary school child, Jim, with specific visual motor integration differences constructed a unit fraction concept.

Author/Presenter

Jessica H. Hunt

Juanita Silva

Rachel Lambert

Year
2019
Short Description

This paper investigates how one elementary school child with specific visual motor integration differences constructed a unit fraction concept.

In-Game Actions to Promote Game-Based Math Learning Engagement

Game-based learning (GBL) has increasingly been used to promote students’ learning engagement. Although prior GBL studies have highlighted the significance of learning engagement as a mediator of students’ meaningful learning, the existing accounts failed to capture specific evidence of how exactly students’ in-game actions in GBL enhance learning engagement. Hence, this mixed-method study was designed to examine whether middle school students’ in-game actions are likely to promote certain types of learning engagement (i.e., content and cognitive engagement).

Author/Presenter

Jewoong Moon

Fengfeng Ke

Lead Organization(s)
Year
2019
Short Description

This mixed-method study was designed to examine whether middle school students’ in-game actions are likely to promote certain types of learning engagement (i.e., content and cognitive engagement).

Profiling Self-Regulation Behaviors in STEM Learning of Engineering Design

Engineering design is a complex process which requires science, technology, engineering, and mathematic (STEM) knowledge. Students' self-regulation plays a critical role in interdisciplinary tasks. However, there is limited research investigating whether and how self-regulation leads to different learning outcomes among students in engineering design. This study analyzes the engineering design behaviors of 108 ninth-grade U.S. students using principal component analysis and cluster analysis.

Author/Presenter

Juan Zheng

Wanli Xing

Gaoxia Zhu

Guanhua Chen

Henglv Zhao

Charles Xie

Lead Organization(s)
Year
2019
Short Description

This study analyzes the engineering design behaviors of 108 ninth-grade U.S. students using principal component analysis and cluster analysis.

Gina’s mathematics: Thinking, tricks, or “teaching”?

Students with learning disabilities display a diverse array of factors that interplay with their mathematical understanding. Our aim in this paper is to discuss the extent to which one case study elementary school child with identified learning disabilities (LDs) made sense of composite units and unit fractions. We present analysis and results from multiple sessions conducted during a teaching experiment cast as one-on-one intervention.

Author/Presenter

Jessica H.Hunt

Beth L.MacDonald

JuanitaSilva

Year
2019
Short Description

This paper discusses the extent to which one case study elementary school child with identified learning disabilities (LDs) made sense of composite units and unit fractions.