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Developing Transmedia Engineering Curricula using Cognitive Tools to 
Impact Learning and the Development of STEM Identity (RTP) 

 
 
 
 
I. Abstract  
 
This paper examines the use of Imaginative Education (IE) to create an NGSS-aligned middle 
school engineering curriculum that supports transfer and the development of STEM identity.  In 
IE, cognitive tools—such as developmentally appropriate narratives, mysteries and fantasies—
are used to design learning environments that both engage learners and help them organize 
knowledge productively.  We have combined IE with transmedia storytelling to develop two 
multi-week engineering units and six shorter engineering lessons.  An overview of the 
curriculum developed to date and a more detailed description of the engineering design unit is 
presented in this paper. 
 
The curriculum is currently being implemented in treatment and non-treatment classrooms in 
middle schools throughout the Springfield, MA public school system (SPS).  In tandem with 
pilot-year implementation of the curriculum, we have developed an assessment instrument to 
measure student learning outcomes associated with a transfer variant known as preparation for 
future learning (PFL). An analysis of the results from the PFL assessment support the position 
that a curriculum employing IE cognitive tools can facilitate both transfer-in thinking and the 
capacity of students to “think with” and thereby interpret important engineering concepts. 
 
 
II. Introduction 

Engineering in K-12 Education   
The National Research Council (NRC) reports that the U.S. “will need a steady supply of well-
trained engineers, scientists, and other technical workers...to succeed and prosper in the twenty-
first century.” 1  Because our society is becoming increasingly dependent on engineering and 
technological advances, it is also recognized that all citizens need to have a basic understanding 
of engineering processes to make informed choices and understand our world. To address these 
needs there has been a growing nationwide interest to include engineering in both formal and 
informal pre-college education. In reviewing early attempts at K-12 engineering education, the 
NRC found that including engineering in K-12 education has numerous benefits including:  
improved learning and achievement in science and mathematics; increased awareness of 
engineering and the work of engineers; understanding of and the ability to engage in engineering 
design; interest in pursuing engineering as a career; and increased technological literacy. 2  
 
Initially individual states led the effort to include engineering in K-12 education. More recently 
attention has shifted to the national level by integrating engineering design into the Next 
Generation Science Standards (NGSS) at the same level as scientific inquiry. The NRC notes 
that the insight and interest students gain from this integration should “help students see how 



science and engineering are instrumental in addressing major challenges that confront society 
today…” 1 
 
While including engineering design in NGSS can potentially transform K-12 science education, 
the resources available to teachers for implementing this approach are still largely undeveloped. 
The curriculum presented in this paper goes beyond the current practice by applying research 
from the learning sciences to:   

• Frame curriculum units and lessons using dynamic narratives and other cognitive tools;  
• Deliver these narratives through transmedia storytelling, in which students become 

characters in immersive experiences spread over multiple media formats; and 
• Integrate science and engineering in a way that is consistent with NGSS. 

 
Engaging Students through Imaginative Education 
The engineering education literature has long recognized the need to rethink how students 
engage with content.3 Many have raised concerns that reductionist engineering courses that omit 
intellectual and sociopolitical histories help discourage women from scientific fields.4-6  Others 

provide examples of how using storytelling can successfully address these concerns in 
engineering education at a variety of grade levels.7-13   
 
The curriculum presented in this paper is based on the theory of Imaginative Education (IE) 
developed by Kieran Egan.14-18  Egan’s approach builds on learners’ characteristic ways of 
thinking to structure their engagement with ideas and knowledge.  His intent is to engage 
learners’ imaginations in their pursuit of understanding and thus engender the kind of caring 
about learning necessary for developing learners’ capacities to engage in deep learning. 
 
In the IE approach, instruction is designed to support a developmental sequence of five different 
types of understanding that enable learners to make sense of the world in different ways. Each 
understanding includes an array of cognitive tools. The most important of these tools is the use 
of narrative. Bereiter writes that “narratives…create in the reader the experience of significant 
conditions and events. When in the grip of a story, people don’t think, ‘How is this relevant to 
me and my problems?’  Instead they experience events through the protagonists…” 19 

Researchers in cognitive psychology have learned that stories—both the ones stored in our 
memories and those we generate as we interact with the world—are essential to all aspects of 
learning and have long been used as a tool for communicating understanding to students.20 They 
are the primary means learners have of relating their existing knowledge to the new ideas they 
are learning21 and to express their understanding of the world.22 They ground complicated 
concepts in concrete terms and connect abstract ideas with emotions and events.23 According to 
IE theory, the narrative structures most appropriate for middle school build on two of the five 
types of understanding described by Egan:  mythic understanding (including the use of fantasy 
and mystery) and romantic understanding (including exploring limits and extremes of reality and 
identifying with heroes and heroines).  
 
A Transmedia Approach to IE Narratives 
Transmedia storytelling is “a process where integral elements of fiction get dispersed 
systematically across multiple delivery channels for the purpose of creating a unified and 



coordinated entertainment experience.” 24 Videos; websites; blogs; social media; photos, art, and 
diagrams; newspaper/magazine articles; journal entries; transcripts of phone calls or videos; 
documents and records; books or stories; and radio/audio clips are all forms of media used by 
transmedia storytellers. When using transmedia to create learning environments, research has 
shown the importance of learners engaging in transmedia play.25 In transmedia play learners go 
beyond being merely consumers of information and instead become participants who create 
“new information through connections, explorations, and other forms of imaginative--and 
productive—play.” 26  
 
The impact of transmedia is similar to IE: “Transmedia consumers are more involved in the 
story...resulting in more engagement, intrinsic motivation, and media enjoyment.” 27 
Additionally, “High engagement and media enjoyment result in children’s more elaboratively 
processing information and thus encourage self-regulated learning.” 27 The benefits of using 
transmedia go beyond increased engagement. One is the variety of literacies transmedia 
environments support, “including textual, visual, and media literacies, as well as multiple 
intelligences…[it] allows for important social sharing among collaborators.” 28 Additionally, 
“children must learn to read both written and multimedia texts broadly (across multiple media) 
and deeply (digging into details of the narrative).” 28    
 
III. Applying IE to Create a Student Learning Website (goteems.org) 
This paper presents a transmedia engineering curriculum called Transforming Engineering 
Education for Middle Schools (TEEMS) that is structured around narratives and other IE 
cognitive tools.  Aligned with NGSS and designed for the sixth-grade, the TEEMS curriculum is 
available online through a multimedia, interactive platform in which students become immersed 
in the narrative adventures. Half-finished now, it will be completed by summer, 2020.  The site 
already includes a multi-week unit introducing engineering design and three additional lessons 
that apply engineering design in different contexts.   
 
The Survivorama Unit 
The Survivorama unit aligns with the Next Generation Science Standards (NGSS) for MS-ETS1 
Engineering Design.  The unit introduces students to the engineering design cycle through the 
story of Monet, an intrepid 17-year-old who takes on a bio-tech company with evil plans: to 
generate extreme, un-survivable weather all over the planet.  In this two-week unit students: 

• Learn about engineering design through engaging with a dystopian narrative that leads to 
creating their own engineering design cycle;  

• Help Monet fight Collusia by designing bio-armor that can survive any condition;  
• Explore the design cycle more deeply by identifying the design failures in a real-life case 

study; and  
• apply their knowledge by engaging in a design challenge.   

The flow of the unit is illustrated in Figure 1. 
 



 
Figure 1:  Flow of Survivorama Unit 

 
Monet’s Story 
Through video and a variety of online resources, students are introduced to the story of the 
Survivorama that frames the unit.   

Storyline:  Monet designs landscapes for the Survivorama, a big dome where the 
company creates extreme weather conditions. In the Survivorama, “testers” try 
out tough armor – the SuperSuit – to see if it protects them from environmental 
disasters. But one day Monet’s access to the dome is cut off without explanation. 
Then a co-worker named Hunter appears and shows Monet a hacked email that 
reveals a horrible secret: Lisa, the Collusia’s CEO, plans to create extreme 
weather all over the planet so that everyone needs her SuperSuit – and she’ll be 
rich. When Hunter disappears, Monet discovers a mysterious flash drive in his 
empty office. She finally finds Hunter locked in the Survivorama with no 
SuperSuit to protect him. She must go on the run … but she vows to return and 
rescue Hunter. 
 

Create a Class Design Cycle 
Now immersed in the storyline, students become active participants by working together to build 
the engineering design cycle based on pieces of information they discover in Hunter’s logbook.  
These include an old video he found showing designers from the past working successfully 
through a design cycle and his notes about the video.   

Storyline:  Monet is ready to return to the Survivorama and rescue Hunter. She 
has an idea about how he can survive the tough conditions in the dome: design 
bio-armor (something even better than Lisa’s SuperSuit). But she needs help! 



Monet believes that there may be key ideas about design in the files Hunter left 
behind on his flash drive.  

 
Define 
Students apply what they have learned about the define phase of the design cycle to identify the 
problem they want to solve and describe the user’s needs. Students explore all the resources to 
identify the needs for the bio-armor.  Resources include voicemails, hacked emails, and a 
Survivorama map showing Hunter’s location and the local terrain. 

Storyline:  With Hunter in danger, time is running out. It’s time to start designing 
bio-armor that will withstand the extreme weather in the Survivorama. Thanks to 
Hunter’s notes and your students’ efforts, they now have the engineering design 
cycle to get them started. And Monet has more help to offer: secret documents 
hacked from Lisa’s database that show what it really takes to survive in the dome 
(see Figure 2).  

 

 
Figure 2:  Terrain Report from the Desert Zone of the Survivorama 

 
Develop 
Students next apply what they have learned about the develop phase of the design cycle to 
research the problem, design a solution and create a prototype.  Resources include a Materials 
Toolbox, bio-armor template, and prototype sketching software. 

Storyline:  With students’ help in the DEFINE phase of the engineering design 
cycle, Monet now knows what hazards the bio-armor will have to withstand and 



what our design criteria are in each zone. What’s next? Monet found another 
classified document that has information students can use to design the bio-armor 
(see Figure 3).  
 

 
Figure 3:  Material Property Document Discovered by Monet 

 
Optimize 
Students next apply what they have learned about the optimize phase of the design cycle to test 
their design, get feedback, and communicate their solution.  Resources include a material cost 
table and the bio-armor template. 

Storyline:  Monet is growing desperate to rescue Hunter, before it’s too late. The 
bio-armor designs for each zone are ready. But before building the bio-armor, 
Monet discovers that she has another constraint – she won’t be able to access all 
the materials because some are too expensive for her to get. With new information 
about material costs, she’ll need students to update and OPTIMIZE their designs 
to lower the bio-armor cost as much as possible.  

 
Monet’s Story Ends 
A video wraps up Monet’s story and provides a transition out of the world of the Survivorama. 

Storyline: Using students’ designs, Monet has built the bio-armor that can 
navigate the three zones in the Survivorama – and she’s ready to rescue Hunter.  

 



The Boston Molasses Disaster 
In this section students take a deeper look at the engineering design cycle by investigating an 
engineering failure.  Students solve the mystery of what went wrong–and why–by hunting 
through videos, animations, diagrams, real-life accounts, and historical photos and court 
transcripts (see Figure 4). 

Storyline:  Students experience the strange-but-true story of the 1919 Boston 
Molasses Disaster through the eyes of real-life hero Isaac Gonzales, an immigrant 
who worked for USIA, the company in charge of the tank. Isaac risked being fired 
and even jailed as he repeatedly warned the company about the tank’s imminent 
collapse. In this story a gigantic tank holding over two million gallons of molasses 
burst and flooded the streets of Boston’s North End – with disastrous 
consequences. An entire neighborhood was destroyed and 21 people died. The 
collapse was the result of a series of failures in the engineering design cycle: the 
construction was rushed, the materials used to build the tank weren’t strong 
enough, the tank was never tested, and warnings about leaks were ignored.  
 

 
Figure 4:  Control Panel for the Boston Molasses Disaster 

 
Cellphone Holder Design Challenge 
This challenge pulls together everything students have learned as they define, develop and 
optimize their own cellphone holder design.  

Storyline:  Teachers and students in our state are worried about how kids use 
cellphones instead of paying attention in class. They’ve tried everything they can 
think of to stop the problem, and nothing is working. But they heard about a new 
idea: instead of trying to keep cellphones out of the classroom, use them to help 
learning. It turns out that in almost every subject, there’s a good way to use 
cellphones for learning. Our school is going to be the first to use cellphones this 
way in sixth-grade classrooms. The cellphones on your desks have to be easy to 



read and have to stay in place. There’s one problem: our design also has to be low 
cost. One teacher suggested making cellphone holders out of cardboard. So this is 
our design challenge: can we design a cellphone holder that’s made from 
cardboard?  

 
Return to Earth Lesson 
Return to Earth accompanies the "Earth's Place in the Universe" science unit. This two-day 
lesson introduces students to concepts of engineering design through the story of the disastrous 
Apollo 13 mission of 1972.  It was created in collaboration with real-life hero, Francis (Poppy) 
Northcutt—the first female engineer to work in NASA’s mission control.  Return to Earth 
aligns with the Next Generation Science Standards (NGSS) for MS-ETS1 Engineering Design. 
 

Storyline:  The lesson opens with a first-person account from Northcutt, recalling her 
work at NASA’s Mission Control. Students delve into the astronauts’ plight when an 
oxygen tank on the Apollo 13 spacecraft explodes. With days to go before Apollo 13 can 
get back to Earth, carbon dioxide from the astronaut’s own breath builds to nearly fatal 
levels. Like the NASA engineers of 1972, students gather supplies to design a filter fix 
that will lower the carbon dioxide levels and keep the astronauts alive. 
 

 
Figure 5:  First Control Panel for the Return to Earth Lesson 

 
 
Tragedy in Haiti Lesson 
Tragedy in Haiti accompanies the "Earth's Systems" science unit. This one-day lesson reinforces 
the Define phase of the engineering design cycle through the story of the 2010 Haiti earthquake. 
Tragedy in Haiti aligns with the Next Generation Science Standards (NGSS) for MS-ETS1 
Engineering Design. 
  

Storyline:  The lesson opens with a video account from 17-year-old Rachel Lunique, a 
real-life survivor of the quake. After hearing her story, students dig deeper into what 



happened on the day of the earthquake and its disastrous consequences: 300,000 people 
lost their lives and over a million were left homeless. Fictionalized case studies of four 
quake survivors highlight the desperate situation of the Haitian people.  In the Design 
Challenge, students take on the role of engineers to identify the survivors’ needs (criteria) 
and what stands in the way of getting aid to them (constraints).  
 

 
Figure 6:  First Control Panel for the Tragedy in Haiti Lesson 

 
 
From the Future Lesson 
From the Future accompanies the “Biological Evolution” science unit. It aligns with the Next 
Generation Science Standards (NGSS) for MS-ETS1 Engineering Design.  
 

Storyline:  This one-day lesson reinforces the engineering design cycle – Define, 
Develop, Optimize – through the story of Alejandra, a 14-year-old from far in the 
future. During a class field trip, Alejandra discovers “fossils” that are actually 
phones from different times in history, up to the smartphone of our day. With 
Alejandra, students see how phone designs have evolved, or improved, over time 
– and how technological evolution is the same and different from biological 
evolution.  In the design challenge, students take the next step in the evolution of 
phone design: designing an app to help fifth-graders making the transition to sixth 
grade.  



 
Figure 7:  First Control Panel for the From the Future Lesson 

                

IV.  Teacher Website (http://teemsproject.com)    
A teacher website supports teachers and schools implementing the TEEMS curriculum.  The 
most important resources on the site are guides for each unit and lesson.  Each guide includes: 

• A description telling the story of the unit or lesson, the time needed to complete it and the 
NGSS standards addressed; 

• A list of materials needed for classroom implementation;  
• Documents to be printed out for students;  
• Diagrams showing the flow of the lesson (for example, see Figure 1);  
• Step-by-step instructions for implementing each unit or lesson with discussion prompts, 

guidance for using resources on the student learning website, links to additional resources 
and tips for teachers. 

Another import resource on the site is a set of instructional videos for teachers.  Example topics 
include insights on the engineering design cycle and why students should learn about the design 
cycle.  
 
V. Context of Pilot-Year Implementation and Outcome Assessments 
 
The TEEMS curriculum is currently being piloted in the Springfield Public School (SPS) system, 
an urban public K-12 school district in a northeastern state. The district serves more than 25,000 
students from preschool to grade twelve in 32 elementary schools, 12 middle schools, 3 schools 
serving grades 6 to 12, and 8 alternative schools. The district also includes magnet schools, 
vocational schools, and a variety of other specialized educational settings. Most students in the 
district are Hispanic (67%) or African American (19%). A vast majority (83%) of the district’s 
students are considered “high needs,” which is a designation that includes factors related to 
language needs, economic disadvantages, and/or disability status.  
 
Six of the district’s 12 middle schools have agreed to participate in the TEEMS pilot; 4 are being 
used as treatment schools and 2 as comparison (non-treatment) schools. Each of the schools has a 



single 6th grade science teacher. There are 724 students participating in the pilot year, 410 in 
treatment classrooms and 314 in comparison classrooms.   
 
Following the pilot year, the TEEMS curriculum will be revised based on formative assessment 
data collected in the pilot year.  Then the full TEEMS curriculum (two units and six lessons) will 
be tested for two years throughout participating SPS schools.  Data will be collected using a 
mixed methods approach to measure both learning and the development of STEM identity. 
 
 
VI. Assessing the Effectiveness of Cognitive Tools via Preparation for Future Learning 
A significant goal of exploring the effectiveness of a curriculum based on IE theory is to gather 
evidence concerning the efficacy of employing IE cognitive tools as a means of facilitating 
student learning. This was expressed most clearly in a recent round-table webinar29 wherein 
researchers at the Center for Imagination in Research, Culture, and Education (CIRCE), 
including Kieran Egan and Gillian Judson, highlighted that assessment of IE-embedded student 
learning should depend on the effect of cognitive tools as a central construct of investigation. 
 
Our present efforts at capturing indicators of the effectiveness of cognitive tools were primarily 
informed by our understanding of the capacity of cognitive tools to serve as exemplars of 
strategic mediation of student learning30  and an understanding based on Egan’s own articulation 
of the role of cognitive tools as mediators.31  Also informing our efforts are associated theoretical 
works in the field of IE development like those of Fettes32  which draw a parallel between IE 
cognitive tools and the “psychological tools” expressed in sociocultural theory, the role of which 
was to serve as support for mediation. 
 
Seeking to carry out a fine-grained assessment of the effect of cognitive tools as mediators, we 
made use of a variant model of transfer of learning33 known as preparation for future learning 
(PFL).  In this model transfer is re-contextualized and bifurcated into the constructs of transfer-
in learning, describing innovation-oriented learning that emphasizes interpretive knowledge, and 
transfer-out learning, characterized by efficiency-oriented learning and a dependence on 
replicative and applicative knowledge.34,35  In later work applying the PFL assessment model to 
sociocultural theory, Bransford, Sears, and Chang36 demonstrated a method by which PFL could 
account for incremental elements of successful mediation, identifying the characteristics of 
transfer-in learning as indicators of proximal navigation along the trajectory of learning 
development and the characteristics of transfer-out learning constituting indicators of distil 
development through which learning is crystallized into independent performance. 
 
Because transfer-in learning is not commonly assessed as a traditional outcome of instruction,34 
our early, pilot year efforts to assess student learning have centered on creating an assessment 
instrument that could–at sufficient levels of reliability, credibility, and rigor–capture indicators 
of transfer-in learning. The structure of our pilot assessment items were, in part, derived from 
exemplar categories of PFL student behavior and expressions of transfer-in thinking,36 as well as 
those represented in established assessment strategies reflected in extant PFL assessment 
instruments, especially in prior research projects like those of Arena37 and Grover, Pea, and 
Cooper.38  However, when appropriate, we also remained open to incorporating new categories 
of interpretation grounded in evidence based on student response patterns to PFL prompts. 



VII. Development and Implementation of a PFL Assessment Instrument 
Our initial effort at designing a PFL assessment produced an instrument focusing in a broad, 
exploratory manner on capturing both direct and indirect indicators of transfer-in learning. 
Questions 1A and 1B were organized as constructed response questions referencing a 
narratively-framed, multi-stage problem-solving scenario (question 1A is illustrated in Figure 8). 
Questions 2 and 3 were intended to gather evidence of students’ ability to reflect on their 
experiences learning engineering concepts.  Finally, questions 4 and 5 targeted specific levels of 
students’ engineering knowledge (following Broudy39): question 5 was a scenario-based selected 
response item intended to measure students’ replicative knowledge of engineering concepts and 
the question 6 was an interpretive drawing task. 
Stakeholder participation in the development of the student learning outcome assessment was a 
high priority in this project. As such, several rounds of expert revision–provided by professionals 
both internal and external to the project–guided the creation of this instrument. The earliest draft, 
based on ideas for a dynamic assessment of PFL was composed in February of 2019. This was 
modified for conceptual clarity and was expanded in scope as a result of collaboration with 
partners at STCC and CIRCE. A draft was then submitted to the SPS Design Team – a focus 
group of middle school teacher-leaders from the participating school district – who suggested 
improvements to language use and accessibility. A fourth round of revisions was implemented, 
following the advice of collaborators specializing in assessment and evaluation, focusing on the 
structure of the prompts. Finally, after compiling this feedback from multiple sources, a working 
draft of the six-item pilot instrument was composed for use in September of 2019. 
 

 
Figure 8:  PFL assessment question 1A 



VIII. Key Findings from Early Analysis of Student Learning Outcome Data 
As of January 2020, the first 243 student responses, roughly 33% of the expected total, have 
been collected and analyzed, representing assessment results from two treatment condition 
classrooms and one comparison class. These pilot data have been sufficient to inform useful 
interpretations, providing a basis for drawing conclusions about the effectiveness of our 
assessment items and framing tentative propositions about the potential role of a curriculum 
based on cognitive tools in facilitating preparation for student learning. 
 
Based on the quality of responses to items in the assessment instrument, we decided during the 
earliest phase of analysis to exclude questions 1B, 2, 3 and 4 and retain questions 1A and 5 for 
further evaluation. In some cases, this decision owed to recognizing the highly experimental 
nature of the question (as with 1B and 4) which appears to have created unclear establishing 
conditions for students, resulting in little variability in student responses. In other cases, as with 
questions 2 and 3, the reflective quality of the prompt seemed to have proved too variable, 
resulting in a dispersive overabundance of response categories that could not be further 
reconciled. 
 
Evaluation of responses to questions 1A and 5 each then proceeded from the generation of a 
rubric by which scores could be assigned.  For question 1A, rubric categories were largely a 
priori adaptations of PFL behaviors exemplified in the literature,35,37 these being categories 
structured primarily to reference indicators of (1) strategizing, (2) collaboration and (3) resource-
seeking, and indications of partial orientation to those behaviors in the engineering context—
such as (4) measuring, (5) modelling, and (6) considering impacts; these were organized into a 
four-point ordinal scale ranging from negligible to advanced transfer-in thinking (see Figure 9).  
 
For question 5, rubric categories were partially based on PFL behaviors, most especially those 
related to displays of interpretive knowledge,35,39 but were also informed by patterns of student 
responses identified in comparisons of student work; in this way, five nominal categories were 
established, grouping student’s responses as demonstrating: (1) poor orientation, (2) an 
unelaborated schematic, (3) an elaborated schematic, (4) a rote engineering design process, or (5) 
an interpreted engineering design process. 
 
Comparative statistical analysis of student responses to questions 1A and 5 has provided 
promising evidence of the effectiveness of instruction guided by cognitive tools to positively 
influence preparation for future learning.  For question 1A, a non-parametric analysis was 
conducted on early by-group data. An independent two-group Mann-Whitney test was conducted 
to investigate differences among the treatment (n = 157) and comparison (n = 88) conditions. 
This analysis indicated that the PFL thinking variable was significantly greater, in the statistical 
sense, for the treatment group (Mdn = 3) than for the comparison group (Mdn = 2), U = 5051.5, p 
= .0002941. This analysis supported the inference that there was a significantly greater tendency 
to engage in PFL thinking among students in the treatment group. One clear corollary of this 
inference could be found in the percentage of students in each condition who could produce at 
least one indicator of PFL thinking in their response: In the treatment condition, 59.9% of 
students responded with at least one statement indicating PFL thinking, whereas in the 
comparison group only 37.4% of students responded in this manner. 
 



 
Figure 9 Question 1A scoring rubric 

 
 
For Question 5 a chi-square test of independence was carried out to examine the relationship 
between condition (treatment vs comparison, with the same sample sizes as above) and category 
of responses based on the rubric, which provided a proxy indicator of students’ interpretive 
knowledge of the engineering design process. The relationship between these variables was 
found to be significant, X2 (4, N = 245) = 36.33, p < .001. This finding supported the inference 
that student responses incorporating the production of a certain type of diagram displayed a 
statistically significant tendency to depend on whether the student was in the treatment group or 
the comparison group. In context, it is worth noting that the most theoretically “correct” 
response, producing a highly-interpreted and sophisticated diagram, was demonstrated in the 
treatment group far more often – at a ratio of more than 4:1 against the comparison group. 
 
IX. Discussion 
Formative assessment has been critical in providing direction for developing the TEEMS 
learning environment in a way that best meets the needs of teachers.  For example, in developing 
IE-based learning environments over the past five years we have noted the need for software that 
is robust on a wide variety of platforms (including those that may be outdated or that have only 
minimal support); that requires little engineering expertise in supervising and supporting its use; 
and that is adaptable to a variety of teacher needs and time schedules.40  
 
In developing the TEEMS curriculum, we are continuing to listen to teacher concerns and adjust 
the curriculum accordingly.  In focus groups with teachers conducted by an external evaluator, 



the evaluator reported that “The TEEMS curriculum is well-received by teachers, engaging for 
students, and may influence teaching of other units.”  She also noted the following: 

• Treatment teachers were overwhelmingly positive about and appreciative of the 
curriculum, which, with the exception of some moments of confusion, was reported to be 
easy to follow and use.  

• Teachers used words like hands-on, problem solving, creativity, and active engagement 
to describe how the curriculum was different from other science units.  

• They broadly agreed that their students displayed higher-than-usual enthusiasm for the 
TEEMS units and lessons, with one teacher noting, “Students were so engaged; it was 
exciting to see students that would say, ‘this is so boring’ be totally engaged.  

 
In addition, the evaluator reported three key ways that the curriculum had felt like a valuable 
experience for them and/or their students:  
 

• Appreciation of the value of story in teaching science content. 
Key quote: “[In another unit] there is an end-product about discovering a new planet, but 
there is no story behind it. [In the future I might] try to create a story and add videos of 
real-life work on other planets.” 

 
• A new understanding of how to teach the skills of collaboration/teamwork (especially 

through the use of the videos and watching real teams work). 
Key quote: “[A student presented his cell phone idea to the class] and he credited another 
student; it led to discussion of sharing ideas and crediting.” 

 
• Realization of the importance of the teacher’s role in helping students think divergently, 

rather than immediately narrowing to a right answer.  
Key quote: “I learned that I have to be more open-minded about how I respond to 
students so that I’m not stifling their thinking…[so they see] there is not one right way.” 

 
Pilot-year results from the preparation for future learning (PFL) assessment instrument have 
provided encouraging early evidence to support the assertion that IE cognitive tools, in their role 
as mediators,18,31,32 can facilitate student learning by providing a scaffold for immature 
conceptual knowledge in such a way as to allow students to more successfully orient themselves 
to new learning contexts35-37. When posed a novel problem-solving scenario task, as in question 
1A of the PFL assessment, students in the treatment group responded, to a degree greater than 
those in our non-treatment classrooms, with statements that showed their capacity to orient to the 
problem through transfer-in thinking. Similarly, as was indicated in the pattern of early 
responses to question 5 of the PFL assessment, when called-upon to create a pictorial 
representation of their understanding of the engineering design process – the conceptual focus of 
the engineering unit – students in treatment classrooms were able to demonstrate a greater 
capacity to “think with” the concept in an interpretive manner, producing a greater number of 
sophisticated examples of the engineering design process. 
 
In the years to come, our intention is to expand our repertoire of approaches to PFL assessment 
in the context of measuring the effectiveness of a curriculum based on transnarratively-guided 
Imaginative Education, creating conditions to elicit measures of transfer of learning that integrate 



more fully into the transmedia framework by which the curriculum as a whole is composed. The 
discrete nature of PFL assessment as it has occurred in the pilot year has proved to be a 
limitation to articulating an ideal, dynamic assessment scenario for measuring PFL – whereby 
students are offered incremental opportunities to demonstrate their ability to learn from new 
materials as they are presented34, 35 – and, going forward, we would like to ameliorate the 
circumstance by incorporating assessment items into classroom activities. 
 
X. Conclusions 
We have applied the theory of Imaginative Education to develop an engineering learning 
environment that is based on the Next Generation Science Standards.  While currently half 
finished, when completed it will consist of two multi-week engineering design units and six 
shorter lessons that apply engineering design to various science topics taught in the sixth grade.  
The curricula is currently being piloted in sixth-grade classrooms to research its impact for 
increasing (1) learners’ capacities to engage in both innovative and direct application of 
engineering concepts, and (2) the formation of STEM identity. 
 
Early results from the PFL assessment have provided data to support that students in treatment 
classrooms can display greater indication, both indirect and direct, of PFL. Our item by which 
we evaluated indirect indication of PFL, students’ ability to display transfer-in thinking 
demonstrated a pattern of response which contained a greater degree of PFL thinking behaviors 
as a result of IE-based instruction. A similar pattern favoring a tendency for greater PFL thinking 
among students in treatment classrooms was determined with respect to responses to our direct 
PFL assessment item – through which we attempted to measure students’ interpretive 
knowledge. On the whole, these early data have helped to advance the notion that IE cognitive 
tools can successfully serve as mediators of student learning by providing a framework by which 
students can orient themselves to take advantage of new learning. 
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