Gaming/Virtual Environments

Thinking Outside the Box of Rocks

In this article we introduce a National Science Foundation-funded research project called TecRocks that has developed new interactive simulations and an innovative online curriculum module that weaves rock formation and plate tectonics together such that secondary teachers and students can approach these two topics as integrated systems. In the 2022-23 school year, the curriculum was implemented in middle and high school classrooms across the United States.

Author/Presenter

Trudi Lord

Amy Pallant

Lead Organization(s)
Year
2023
Short Description

In this article we introduce a National Science Foundation-funded research project called TecRocks that has developed new interactive simulations and an innovative online curriculum module that weaves rock formation and plate tectonics together such that secondary teachers and students can approach these two topics as integrated systems.

Patterns of Using Multimodal External Representations in Digital Game-based Learning

Although prior research has highlighted the significance of representations for mathematical learning, there is still a lack of research on how students use multimodal external representations (MERs) to solve mathematical tasks in digital game-based learning (DGBL) environments. This exploratory study was to examine the salient patterns problem solvers demonstrated using MERs when they engaged in a single-player, three-dimensional architecture game that requires the acquisition and application of math knowledge and thinking in game-based context problem solving.

Author/Presenter

Yanjun Pan

Fengfeng Ke

Chih-Pu Dai

Lead Organization(s)
Year
2022
Short Description

Although prior research has highlighted the significance of representations for mathematical learning, there is still a lack of research on how students use multimodal external representations (MERs) to solve mathematical tasks in digital game-based learning (DGBL) environments. This exploratory study was to examine the salient patterns problem solvers demonstrated using MERs when they engaged in a single-player, three-dimensional architecture game that requires the acquisition and application of math knowledge and thinking in game-based context problem solving.

Exploring Students’ Learning Support Use in Digital Game-based Math Learning: A Mixed-Methods Approach Using Machine Learning and Multi-cases Study

Digital game-based math learning environments (math DGBLE) are promising platforms that provide students with opportunities to master conceptual understanding and cultivate mathematical thinking, on which the contemporary mathematics education places an emphasis. Literature on learning support in digital game-based learning (DGBL) rarely investigate learners' support-use behaviors and interaction patterns in relation to math learning. We addressed this research gap in this exploratory mixed-methods study.

Author/Presenter
Chih-Pu Dai
Fengfeng Ke
Yanjun Pan
Yaning Liu
Lead Organization(s)
Year
2023
Short Description

Digital game-based math learning environments (math DGBLE) are promising platforms that provide students with opportunities to master conceptual understanding and cultivate mathematical thinking, on which the contemporary mathematics education places an emphasis. Literature on learning support in digital game-based learning (DGBL) rarely investigate learners' support-use behaviors and interaction patterns in relation to math learning. We addressed this research gap in this exploratory mixed-methods study. We designed and developed a packet of learning supports (i.e., Task Planner and Math Story) in a math DGBLE.

Effects of Game-based Learning Supports on Students’ Math Performance and Perceived Game Flow

Adopting a pretest–posttest experimental design with repeated measures, this study examined the effects of three types of game-based learning supports in the form of modeling on knowledge development that contributed to successful math problem solving and students’ perceived game flow.

Author/Presenter

Yanjun Pan

Fengfeng Ke

Lead Organization(s)
Year
2023
Short Description

Adopting a pretest–posttest experimental design with repeated measures, this study examined the effects of three types of game-based learning supports in the form of modeling on knowledge development that contributed to successful math problem solving and students’ perceived game flow.

Infect, Attach or Bounce off?: Linking Real Data and Computational Models to Make Sense of the Mechanisms of Diffusion

This study explores how the interplay between data and model design shifts 6th graders’ students' ideas about diffusion as they build a range of models (“paper and pencil” and computational models). We present a new web-based environment and approach that integrates model-based and data-based features in the same display which facilitates the comparison of models and real-world data. Further, we illustrate how this environment and approach lead students to converge on one canonical scientific model.

Author/Presenter

Tamar Fuhrmann

Aditi Wagh

Adelmo Eloy

Jacob Wolf

Engin Bumbacher

Michelle Wilkerson

Paulo Blikstein

Year
2022
Short Description

This study explores how the interplay between data and model design shifts 6th graders’ students' ideas about diffusion as they build a range of models (“paper and pencil” and computational models). We present a new web-based environment and approach that integrates model-based and data-based features in the same display which facilitates the comparison of models and real-world data.

MoDa: Designing a Tool to Interweave Computational Modeling with Real-world Data Analysis for Science Learning in Middle School

Coordinating modeling and real-world data is central to building scientific theories. This paper examines how a complementary focus on modeling and data contributed to 8th grade students’ learning of mechanisms underlying wildfire smoke spread in MoDa, a web-based environment that integrates computational modeling side-by-side with real-world data for comparison and validation. Epistemic network analysis of student responses in pre-post tests revealed a shift from primarily macro-level explanations to explanations that integrated macro and micro-level explanations of the phenomenon.

Author/Presenter
Aditi Wagh

Tamar Fuhrmann

Adelmo Antonio da Silva Eloy

Jacob Wolf

Engin Bumbacher

Paulo Blikstein

Michelle Wilkerson

Year
2022
Short Description

Coordinating modeling and real-world data is central to building scientific theories. This paper examines how a complementary focus on modeling and data contributed to 8th grade students’ learning of mechanisms underlying wildfire smoke spread in MoDa, a web-based environment that integrates computational modeling side-by-side with real-world data for comparison and validation.

Exploring the Potential of an Online Suite of Practice-Based Activities for Supporting Preservice Elementary Teachers in Learning How to Facilitate Argumentation-Focused Discussions in Mathematics and Science

This study explored the use of a three-part suite of practice-based activities -- one- and two-player online simulations, an avatar-based simulation, and a virtual teaching simulator—for supporting preservice teachers in learning how to facilitate argumentation-focused discussions in elementary mathematics and science. We share findings from analysis of survey data examining four elementary teacher educators’ perceptions about using these activities within their respective elementary methods courses.

Author/Presenter

Lead Organization(s)
Year
2022
Short Description

This study explored the use of a three-part suite of practice-based activities -- one- and two-player online simulations, an avatar-based simulation, and a virtual teaching simulator—for supporting preservice teachers in learning how to facilitate argumentation-focused discussions in elementary mathematics and science.

Eliciting Learner Knowledge: Enabling Focused Practice Through an Open-Source Online Tool

Eliciting and interpreting students’ ideas are essential skills in teaching, yet pre-service teachers (PSTs) rarely have adequate opportunities to develop these skills. In this study, we examine PSTs’ patterns of discourse and perceived learning through engaging in an interactive digital simulation called Eliciting Learner Knowledge (ELK). ELK is a seven-minute, chat-based virtual role play between a PST playing a “teacher” and a PST playing a “student” where the goal is for the teacher to find out what the student knows about a topic.

Author/Presenter

Griffin Leonard

Jamie N. Mikeska

Pamela S. Lottero-Perdue

Adam V. Maltese

Giancarlo Pereira

Garron Hillaire

Rick Waldron

Rachel Slama

Justin Reich

Lead Organization(s)
Year
2022
Short Description

Eliciting and interpreting students’ ideas are essential skills in teaching, yet pre-service teachers (PSTs) rarely have adequate opportunities to develop these skills. In this study, we examine PSTs’ patterns of discourse and perceived learning through engaging in an interactive digital simulation called Eliciting Learner Knowledge (ELK). ELK is a seven-minute, chat-based virtual role play between a PST playing a “teacher” and a PST playing a “student” where the goal is for the teacher to find out what the student knows about a topic.

“Unnatural How Natural It Was”: Using a Performance Task and Simulated Classroom for Preservice Secondary Teachers to Practice Engaging Student Avatars in Scientific Argumentation

Facilitating discussions is a key approach that science teachers use to engage students in scientific argumentation. However, learning how to facilitate argumentation-focused discussions is an ambitious teaching practice that can be difficult to learn how to do well, especially for preservice teachers (PSTs) who typically have limited opportunities to tryout and refine this teaching practice.

Author/Presenter

Jamie N. Mikeska

Calli Shekell

Jennifer Dix

Pamela S. Lottero-Perdue

Lead Organization(s)
Year
2022
Short Description

Facilitating discussions is a key approach that science teachers use to engage students in scientific argumentation. However, learning how to facilitate argumentation-focused discussions is an ambitious teaching practice that can be difficult to learn how to do well, especially for preservice teachers (PSTs) who typically have limited opportunities to tryout and refine this teaching practice. This study examines secondary PSTs’ perceptions and engagement with a science performance task—used within an online, simulated classroom consisting of five middle school student avatars—to practice this ambitious teaching practice.