Mathematics

Textbooks as a Resource for Teaching Mathematics Through Problem Posing: Catalyzing Instructional Change

Research has shown that teaching mathematics through problem posing, or problem-posing based learning (P-PBL), is a student-centered instructional approach that can improve students’ cognitive and affective aspects of learning. However, since textbooks continue to include very few opportunities for problem posing, researchers have been working to support teachers to integrate problem posing into classroom instruction, drawing on textbooks as a resource.

Author/Presenter

Stephen Hwang

Jaepil Han

Faith Muirhead

Amy Brown

Matthew Melville

Jinfa Cai

Lead Organization(s)
Year
2025
Short Description

Research has shown that teaching mathematics through problem posing, or problem-posing based learning (P-PBL), is a student-centered instructional approach that can improve students’ cognitive and affective aspects of learning. However, since textbooks continue to include very few opportunities for problem posing, researchers have been working to support teachers to integrate problem posing into classroom instruction, drawing on textbooks as a resource. In this paper, we describe how teachers in the P-PBL Project have engaged in instructional change with support from researchers around a high-quality middle school mathematics textbook series.

Fostering Critical Consciousness: A Systematic Review of K-12 Teachers’ Integrations of Sociopolitical Issues in Science and Mathematics Classrooms

Efforts towards providing inclusive science and mathematics education for marginalized students are increasingly found in literature advocating for equity-oriented instruction through supporting students’ critical consciousness. Despite a growing body of research centering on teachers’ development of culturally relevant pedagogies, studies examining how teachers support students’ critical consciousness development are scarce in the context of science and mathematics education.

Author/Presenter

Sheila K. Castro

Julie C. Brown

Kent J. Crippen

Lead Organization(s)
Year
2025
Short Description

Efforts towards providing inclusive science and mathematics education for marginalized students are increasingly found in literature advocating for equity-oriented instruction through supporting students’ critical consciousness. Despite a growing body of research centering on teachers’ development of culturally relevant pedagogies, studies examining how teachers support students’ critical consciousness development are scarce in the context of science and mathematics education. Thus, this systematic review uses empirical literature on critical consciousness to explore teachers’ experiences integrating sociopolitical issues into their science and mathematics classrooms.

Expanding Uses of the STEM Observation Protocol (STEM-OP): Secondary Science Teachers’ Reflections on Integrated STEM Practice

There are few guidelines related to how to implement integrated STEM education in the K-12 science classroom. It is important that teachers have opportunities to reflect on integrated STEM instruction when implemented so that they may further develop their practice. This research aimed to understand how the STEM Observation Protocol (STEM-OP) may be used as a way for teachers to reflect on their integrated STEM practice.

Author/Presenter

Emily Dare

Joshua Ellis

Christopher Irwin

Lead Organization(s)
Year
2025
Short Description

There are few guidelines related to how to implement integrated STEM education in the K-12 science classroom. It is important that teachers have opportunities to reflect on integrated STEM instruction when implemented so that they may further develop their practice. This research aimed to understand how the STEM Observation Protocol (STEM-OP) may be used as a way for teachers to reflect on their integrated STEM practice. This exploratory case study was designed to better understand secondary science teachers’ reflections on the STEM-OP by addressing the following research questions: 1) What are secondary science teachers’ reflections on integrated STEM practices as measured by the STEM-OP? and 2) In what ways do secondary science teachers envision using the STEM-OP as a tool in their practice?

STEM Teacher Characteristics and Mobility: Longitudinal Evidence from the American Midwest, 2010 Through 2023

This study examines the demographics, qualifications, and turnover of STEM teachers in Kansas and Missouri—two contiguous, predominantly rural states in the Midwestern region of the United States. The existing literature lacks detailed insights regarding U.S. STEM teachers, especially with recent economic and social changes over the COVID-19 pandemic, and there is particularly limited evidence regarding STEM teachers in the U.S. Midwest.

Author/Presenter

Chanh B. Lam

Yujia Liu

J. Cameron Anglum

Tuan D. Nguyen

Lead Organization(s)
Year
2025
Short Description

This study examines the demographics, qualifications, and turnover of STEM teachers in Kansas and Missouri—two contiguous, predominantly rural states in the Midwestern region of the United States. The existing literature lacks detailed insights regarding U.S. STEM teachers, especially with recent economic and social changes over the COVID-19 pandemic, and there is particularly limited evidence regarding STEM teachers in the U.S. Midwest. Utilizing large-scale administrative longitudinal data, we filled part of this gap by documenting the characteristics and turnover patterns of STEM teachers in Kansas and Missouri over a 13-year period, from 2010 through 2023.

Noticing in the Midst of Building on a Critical Event

Research on teachers’ noticing of student mathematical thinking has typically focused on how a teacher attends to, interprets, and determines a response to an individual student contribution in isolation from the broader mathematical classroom context. This research focus is not nuanced enough, however, to fully account for the complex noticing required of a teacher engaged in responsive teaching. To support teachers in enacting responsive teaching, it is important to have a way to distinguish high-leverage student contributions from among the many contributions available to a teacher.

Author/Presenter

Shari L. Stockero

Laura R. Van Zoest

Keith R. Leatham

Blake E. Peterson

Year
2025
Short Description

Research on teachers’ noticing of student mathematical thinking has typically focused on how a teacher attends to, interprets, and determines a response to an individual student contribution in isolation from the broader mathematical classroom context. This research focus is not nuanced enough, however, to fully account for the complex noticing required of a teacher engaged in responsive teaching. To support teachers in enacting responsive teaching, it is important to have a way to distinguish high-leverage student contributions from among the many contributions available to a teacher. We draw on a previously developed framework to help teachers identify such contributions, those referred to as a mathematically significant pedagogical opportunity to build on student thinking (MOST).

Noticing in the Midst of Building on a Critical Event

Research on teachers’ noticing of student mathematical thinking has typically focused on how a teacher attends to, interprets, and determines a response to an individual student contribution in isolation from the broader mathematical classroom context. This research focus is not nuanced enough, however, to fully account for the complex noticing required of a teacher engaged in responsive teaching. To support teachers in enacting responsive teaching, it is important to have a way to distinguish high-leverage student contributions from among the many contributions available to a teacher.

Author/Presenter

Shari L. Stockero

Laura R. Van Zoest

Keith R. Leatham

Blake E. Peterson

Year
2025
Short Description

Research on teachers’ noticing of student mathematical thinking has typically focused on how a teacher attends to, interprets, and determines a response to an individual student contribution in isolation from the broader mathematical classroom context. This research focus is not nuanced enough, however, to fully account for the complex noticing required of a teacher engaged in responsive teaching. To support teachers in enacting responsive teaching, it is important to have a way to distinguish high-leverage student contributions from among the many contributions available to a teacher. We draw on a previously developed framework to help teachers identify such contributions, those referred to as a mathematically significant pedagogical opportunity to build on student thinking (MOST).

Noticing in the Midst of Building on a Critical Event

Research on teachers’ noticing of student mathematical thinking has typically focused on how a teacher attends to, interprets, and determines a response to an individual student contribution in isolation from the broader mathematical classroom context. This research focus is not nuanced enough, however, to fully account for the complex noticing required of a teacher engaged in responsive teaching. To support teachers in enacting responsive teaching, it is important to have a way to distinguish high-leverage student contributions from among the many contributions available to a teacher.

Author/Presenter

Shari L. Stockero

Laura R. Van Zoest

Keith R. Leatham

Blake E. Peterson

Year
2025
Short Description

Research on teachers’ noticing of student mathematical thinking has typically focused on how a teacher attends to, interprets, and determines a response to an individual student contribution in isolation from the broader mathematical classroom context. This research focus is not nuanced enough, however, to fully account for the complex noticing required of a teacher engaged in responsive teaching. To support teachers in enacting responsive teaching, it is important to have a way to distinguish high-leverage student contributions from among the many contributions available to a teacher. We draw on a previously developed framework to help teachers identify such contributions, those referred to as a mathematically significant pedagogical opportunity to build on student thinking (MOST).

Speak Up or Stay Silent: How Does Teachers’ Verbal Participation in a Professional Development Programme Relate to Instructional Outcomes?

Like classrooms, professional development (PD) workshops can be organised as dialogic and inclusive spaces, where the verbal contributions of the participants are critical for driving the inquiry and meeting the intended learning goals. Also, similar to how students interact during instruction, teachers’ verbal contributions during workshops may be uneven in their frequency and focus, with some individuals speaking up on particular topics, while others remain relatively silent.

Author/Presenter

Chao Wang

Jennifer Jacobs

Lead Organization(s)
Year
2024
Short Description

Like classrooms, professional development (PD) workshops can be organised as dialogic and inclusive spaces, where the verbal contributions of the participants are critical for driving the inquiry and meeting the intended learning goals. Also, similar to how students interact during instruction, teachers’ verbal contributions during workshops may be uneven in their frequency and focus, with some individuals speaking up on particular topics, while others remain relatively silent. This study examines the nature and variation of teachers’ verbal participation during whole-group discussions as part of a weeklong mathematics PD programme.

Socioscientific Issues: Promoting Science Teachers’ Pedagogy on Social Justice

Socioscientific issues (SSI) are problems involving the deliberate use of scientific topics that require students to engage in dialogue, discussion, and debate. The purpose of this project is to utilize issues that are personally meaningful and engaging to students, require the use of evidence-based reasoning, and provide a context for scientific information.

Author/Presenter

Augusto Z. Macalalag Jr.

Alan Kaufmann

Benjamin Van Meter

Aden Ricketts

Erica Liao

Gabrielle Ialacci

Lead Organization(s)
Year
2024
Short Description

Socioscientific issues (SSI) are problems involving the deliberate use of scientific topics that require students to engage in dialogue, discussion, and debate. The purpose of this project is to utilize issues that are personally meaningful and engaging to students, require the use of evidence-based reasoning, and provide a context for scientific information. This study highlights the value of integrating SSI in science education to engage students with social justice.

Toward a Framework of Culturally Relevant Science and Mathematics Pedagogy: A Pedagogical and Analytical Tool for Teacher Education

In this article, we present a framework of culturally relevant science and mathematics pedagogy (CRSMP), which is grounded in the tenets of culturally relevant pedagogy. It delineates practices ranging from the most accessible and easy-to-implement, to the most challenging and often contentious ways to teach mathematics and science. We provide examples of CRSMP that re-position marginalized learners in relation to science and mathematics.

Author/Presenter

Paula A. Magee

Craig Willey

Lead Organization(s)
Year
2024
Short Description

In this article, we present a framework of culturally relevant science and mathematics pedagogy (CRSMP), which is grounded in the tenets of culturally relevant pedagogy. It delineates practices ranging from the most accessible and easy-to-implement, to the most challenging and often contentious ways to teach mathematics and science.