Mathematics

Best of Both Worlds: Developing an Innovative, Integrated, Intelligent, and Interactive System of Technologies Supporting In-Person and Digital Experiences for Early Mathematics

Mathematics is a core component of cognition. Unfortunately, most young children and teachers cannot access research-based early childhood mathematics resources. Building on a quarter-century of research, we are developing and evaluating an innovative, integrated, intelligent, and interactive system of technologies based on empirically validated learning trajectories that provide the best personal and digital tools for assessing and supporting children’s mathematics learning.

Author/Presenter

Douglas H. Clements

Shannon S. Guss

Julie Sarama

Daniela Alvarez-Vargas

Lead Organization(s)
Year
2024
Short Description

Mathematics is a core component of cognition. Unfortunately, most young children and teachers cannot access research-based early childhood mathematics resources. Building on a quarter-century of research, we are developing and evaluating an innovative, integrated, intelligent, and interactive system of technologies based on empirically validated learning trajectories that provide the best personal and digital tools for assessing and supporting children’s mathematics learning.

Mathematics Teacher Educators’ Navigational Expertise When Designing Multimodal Representations of Practice: A Semiotic Analysis

Critical elements of the expertise of mathematics teacher educators (MTE) can be identified in the artifacts they design for working with prospective teachers (PT), specifically for engaging PT in the double role of practitioners and students of practice. While MTE are increasingly utilizing designed multimodal representations of practice (such as storyboards), theoretical frameworks and methods for analyzing these pedagogical artifacts and the meanings they support are still in early development.

Author/Presenter

Gil Schwarts

Patricio Herbst

Daniel Chazan

Orly Buchbinder

Lawrence M. Clark

Rob Wieman

William Zahner

Year
2025
Short Description

Critical elements of the expertise of mathematics teacher educators (MTE) can be identified in the artifacts they design for working with prospective teachers (PT), specifically for engaging PT in the double role of practitioners and students of practice. While MTE are increasingly utilizing designed multimodal representations of practice (such as storyboards), theoretical frameworks and methods for analyzing these pedagogical artifacts and the meanings they support are still in early development. We utilize a semiotic framework, expanding systemic functional linguistics to encompass non-linguistic elements, to identify aspects of what we call navigational expertise—which supports PTs in engaging both as practitioners and students of the practice.

Unpacking the Nuances: An Exploratory Multilevel Analysis on the Operationalization of Integrated STEM Education and Student Attitudinal Change

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors.

Author/Presenter

Benny Mart R. Hiwatig

Gillian H. Roehrig

Mark D. Rouleau

Lead Organization(s)
Year
2024
Short Description

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors. Addressing this gap, our study applied multilevel modeling to analyze how different iSTEM aspects and demographic variables predict changes in student attitudes.

Unpacking the Nuances: An Exploratory Multilevel Analysis on the Operationalization of Integrated STEM Education and Student Attitudinal Change

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors.

Author/Presenter

Benny Mart R. Hiwatig

Gillian H. Roehrig

Mark D. Rouleau

Lead Organization(s)
Year
2024
Short Description

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors. Addressing this gap, our study applied multilevel modeling to analyze how different iSTEM aspects and demographic variables predict changes in student attitudes.

Unpacking the Nuances: An Exploratory Multilevel Analysis on the Operationalization of Integrated STEM Education and Student Attitudinal Change

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors.

Author/Presenter

Benny Mart R. Hiwatig

Gillian H. Roehrig

Mark D. Rouleau

Lead Organization(s)
Year
2024
Short Description

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors. Addressing this gap, our study applied multilevel modeling to analyze how different iSTEM aspects and demographic variables predict changes in student attitudes.

The Design and Implementation of a Bayesian Data Analysis Lesson for Pre-Service Mathematics and Science Teachers

With the rise of the popularity of Bayesian methods and accessible computer software, teaching and learning about Bayesian methods are expanding. However, most educational opportunities are geared toward statistics and data science students and are less available in the broader STEM fields. In addition, there are fewer opportunities at the K-12 level. With the indirect aim of introducing Bayesian methods at the K-12 level, we have developed a Bayesian data analysis activity and implemented it with 35 mathematics and science pre-service teachers.

Author/Presenter

Mine Dogucu

Sibel Kazak

Joshua M. Rosenberg

Lead Organization(s)
Year
2024
Short Description

With the rise of the popularity of Bayesian methods and accessible computer software, teaching and learning about Bayesian methods are expanding. However, most educational opportunities are geared toward statistics and data science students and are less available in the broader STEM fields. In addition, there are fewer opportunities at the K-12 level. With the indirect aim of introducing Bayesian methods at the K-12 level, we have developed a Bayesian data analysis activity and implemented it with 35 mathematics and science pre-service teachers. In this article, we describe the activity, the web app supporting the activity, and pre-service teachers’ perceptions of the activity.

Teacher Educators’ Use of Formative Feedback During Preservice Teachers’ Simulated Teaching Experiences in Mathematics and Science

The purpose of this research study was to identify how teacher educators (TEs) attend to and use formative feedback as they work to support preservice teachers’ (PSTs’) learning. The formative feedback was provided to the TEs as part of recurring instructional cycles within their elementary mathematics or science methods course. In these instructional cycles, their PSTs prepared for, engaged in, and reflected on their ability to facilitate argumentation-focused discussions in a simulated classroom.

Author/Presenter

Jamie N. Mikeska

Heather Howell

Devon Kinsey

Lead Organization(s)
Year
2024
Short Description

The purpose of this research study was to identify how teacher educators (TEs) attend to and use formative feedback as they work to support preservice teachers’ (PSTs’) learning. The formative feedback was provided to the TEs as part of recurring instructional cycles within their elementary mathematics or science methods course. In these instructional cycles, their PSTs prepared for, engaged in, and reflected on their ability to facilitate argumentation-focused discussions in a simulated classroom. After each cycle, the TEs received formative information about their PSTs’ discussion performance in the form of a feedback report and a scoring report.

Visualizing a Vision for High-Quality, Equitable Math Instruction

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement.

Author/Presenter

Katherine Baker

Catherine S. Schwartz

Ashley N. Whitehead

Olufunke Adefope

Lead Organization(s)
Year
2025
Short Description

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement. The first three dimensions are particularly useful in the work of the drawing task. In this article, we share an overview of the drawing task, its implementation with educators, and sample drawings, detailing how personal drawings were made visible across participants and the conversations resulting from viewing and reflecting on one another’s drawings.

Visualizing a Vision for High-Quality, Equitable Math Instruction

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement.

Author/Presenter

Katherine Baker

Catherine S. Schwartz

Ashley N. Whitehead

Olufunke Adefope

Lead Organization(s)
Year
2025
Short Description

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement. The first three dimensions are particularly useful in the work of the drawing task. In this article, we share an overview of the drawing task, its implementation with educators, and sample drawings, detailing how personal drawings were made visible across participants and the conversations resulting from viewing and reflecting on one another’s drawings.

Visualizing a Vision for High-Quality, Equitable Math Instruction

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement.

Author/Presenter

Katherine Baker

Catherine S. Schwartz

Ashley N. Whitehead

Olufunke Adefope

Lead Organization(s)
Year
2025
Short Description

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement. The first three dimensions are particularly useful in the work of the drawing task. In this article, we share an overview of the drawing task, its implementation with educators, and sample drawings, detailing how personal drawings were made visible across participants and the conversations resulting from viewing and reflecting on one another’s drawings.