Middle

Ten Years of Three-Dimensional Science and Its Implementation in the Secondary Classroom: A Scoping Review

In the decade following the release of the Next-Generation Science Standards in the United States, many efforts have occurred to reform K-12 science teaching. While not all states have adopted NGSS, 48 of 50 have adopted standards that are consistent with the underlying philosophy and research base of NGSS: three-dimensional (3D) science. This scoping review explores the research activity on classroom implementation of 3D Science in secondary schools in the US.

Author/Presenter

Clara M. Smith

Heather M. Leary

Jamie L. Jensen

Rebecca L. Sansom

Lead Organization(s)
Year
2024
Short Description

In the decade following the release of the Next-Generation Science Standards in the United States, many efforts have occurred to reform K-12 science teaching. While not all states have adopted NGSS, 48 of 50 have adopted standards that are consistent with the underlying philosophy and research base of NGSS: three-dimensional (3D) science. This scoping review explores the research activity on classroom implementation of 3D Science in secondary schools in the US.

Mathematics Teacher Educators’ Navigational Expertise When Designing Multimodal Representations of Practice: A Semiotic Analysis

Critical elements of the expertise of mathematics teacher educators (MTE) can be identified in the artifacts they design for working with prospective teachers (PT), specifically for engaging PT in the double role of practitioners and students of practice. While MTE are increasingly utilizing designed multimodal representations of practice (such as storyboards), theoretical frameworks and methods for analyzing these pedagogical artifacts and the meanings they support are still in early development.

Author/Presenter

Gil Schwarts

Patricio Herbst

Daniel Chazan

Orly Buchbinder

Lawrence M. Clark

Rob Wieman

William Zahner

Year
2025
Short Description

Critical elements of the expertise of mathematics teacher educators (MTE) can be identified in the artifacts they design for working with prospective teachers (PT), specifically for engaging PT in the double role of practitioners and students of practice. While MTE are increasingly utilizing designed multimodal representations of practice (such as storyboards), theoretical frameworks and methods for analyzing these pedagogical artifacts and the meanings they support are still in early development. We utilize a semiotic framework, expanding systemic functional linguistics to encompass non-linguistic elements, to identify aspects of what we call navigational expertise—which supports PTs in engaging both as practitioners and students of the practice.

Unpacking the Nuances: An Exploratory Multilevel Analysis on the Operationalization of Integrated STEM Education and Student Attitudinal Change

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors.

Author/Presenter

Benny Mart R. Hiwatig

Gillian H. Roehrig

Mark D. Rouleau

Lead Organization(s)
Year
2024
Short Description

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors. Addressing this gap, our study applied multilevel modeling to analyze how different iSTEM aspects and demographic variables predict changes in student attitudes.

Unpacking the Nuances: An Exploratory Multilevel Analysis on the Operationalization of Integrated STEM Education and Student Attitudinal Change

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors.

Author/Presenter

Benny Mart R. Hiwatig

Gillian H. Roehrig

Mark D. Rouleau

Lead Organization(s)
Year
2024
Short Description

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors. Addressing this gap, our study applied multilevel modeling to analyze how different iSTEM aspects and demographic variables predict changes in student attitudes.

Unpacking the Nuances: An Exploratory Multilevel Analysis on the Operationalization of Integrated STEM Education and Student Attitudinal Change

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors.

Author/Presenter

Benny Mart R. Hiwatig

Gillian H. Roehrig

Mark D. Rouleau

Lead Organization(s)
Year
2024
Short Description

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors. Addressing this gap, our study applied multilevel modeling to analyze how different iSTEM aspects and demographic variables predict changes in student attitudes.

Visualizing a Vision for High-Quality, Equitable Math Instruction

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement.

Author/Presenter

Katherine Baker

Catherine S. Schwartz

Ashley N. Whitehead

Olufunke Adefope

Lead Organization(s)
Year
2025
Short Description

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement. The first three dimensions are particularly useful in the work of the drawing task. In this article, we share an overview of the drawing task, its implementation with educators, and sample drawings, detailing how personal drawings were made visible across participants and the conversations resulting from viewing and reflecting on one another’s drawings.

Visualizing a Vision for High-Quality, Equitable Math Instruction

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement.

Author/Presenter

Katherine Baker

Catherine S. Schwartz

Ashley N. Whitehead

Olufunke Adefope

Lead Organization(s)
Year
2025
Short Description

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement. The first three dimensions are particularly useful in the work of the drawing task. In this article, we share an overview of the drawing task, its implementation with educators, and sample drawings, detailing how personal drawings were made visible across participants and the conversations resulting from viewing and reflecting on one another’s drawings.

Visualizing a Vision for High-Quality, Equitable Math Instruction

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement.

Author/Presenter

Katherine Baker

Catherine S. Schwartz

Ashley N. Whitehead

Olufunke Adefope

Lead Organization(s)
Year
2025
Short Description

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement. The first three dimensions are particularly useful in the work of the drawing task. In this article, we share an overview of the drawing task, its implementation with educators, and sample drawings, detailing how personal drawings were made visible across participants and the conversations resulting from viewing and reflecting on one another’s drawings.

Visualizing a Vision for High-Quality, Equitable Math Instruction

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement.

Author/Presenter

Katherine Baker

Catherine S. Schwartz

Ashley N. Whitehead

Olufunke Adefope

Lead Organization(s)
Year
2025
Short Description

In this article, we overview a professional learning task that involves drawing one’s vision for high-quality, equitable mathematics instruction (HQEMI). The task is part of the ongoing work of a statewide research practice partnership that supports a shared vision of mathematics across the state K–12 system. Our work of HQEMI is rooted in the development of Munter’s (2014) four dimensions for visions of high-quality mathematics instruction (VHQMI): the role of the teacher, classroom discourse, mathematical tasks, and student engagement. The first three dimensions are particularly useful in the work of the drawing task. In this article, we share an overview of the drawing task, its implementation with educators, and sample drawings, detailing how personal drawings were made visible across participants and the conversations resulting from viewing and reflecting on one another’s drawings.

The Benefits of Modesty: Considering Incremental Professional Development for Mathematics Teachers

Professional development (PD) for mathematics teachers often emphasizes transformative instructional change. However, a more modest, incremental approach may offer a higher likelihood of success in ways that complement transformational efforts. This Editorial discusses the potential advantages of incremental PD where teachers make small but meaningful improvements to their practice over time. We explore the differences between transformational PD and incremental PD as evidenced by the articles in this Special Issue.

Author/Presenter

Samuel Otten

Zandra de Araujo

Amber G. Candela

Year
2025
Short Description

Professional development (PD) for mathematics teachers often emphasizes transformative instructional change. However, a more modest, incremental approach may offer a higher likelihood of success in ways that complement transformational efforts. This Editorial discusses the potential advantages of incremental PD where teachers make small but meaningful improvements to their practice over time.