Middle

Conceptualizing Important Facets of Teacher Responses to Student Mathematical Thinking

We argue that progress in the area of research on mathematics teacher responses to student thinking could be enhanced were the field to attend more explicitly to important facets of those responses, as well as to related units of analysis. We describe the Teacher Response Coding scheme (TRC) to illustrate how such attention might play out, and then apply the TRC to an excerpt of classroom mathematics discourse to demonstrate the affordances of this approach.
Author/Presenter

Laura R. Van Zoest

Blake E. Peterson

Annick O. T. Rougée

Shari L. Stockero

Keith R. Leatham

Ben Freeburn

Year
2021
Short Description

We argue that progress in the area of research on mathematics teacher responses to student thinking could be enhanced were the field to attend more explicitly to important facets of those responses, as well as to related units of analysis. We describe the Teacher Response Coding scheme (TRC) to illustrate how such attention might play out, and then apply the TRC to an excerpt of classroom mathematics discourse to demonstrate the affordances of this approach. We conclude by making several further observations about the potential versatility and power in articulating units of analysis and developing and applying tools that attend to these facets when conducting research on teacher responses.

Clarifiable Ambiguity in Classroom Mathematics Discourse

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Author/Presenter

Blake E. Peterson

Keith R. Leatham

Lindsay M. Merrill

Laura R. Van Zoest

Shari L. Stockero

Year
2020
Short Description

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Clarifiable Ambiguity in Classroom Mathematics Discourse

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Author/Presenter

Blake E. Peterson

Keith R. Leatham

Lindsay M. Merrill

Laura R. Van Zoest

Shari L. Stockero

Year
2020
Short Description

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Clarifiable Ambiguity in Classroom Mathematics Discourse

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Author/Presenter

Blake E. Peterson

Keith R. Leatham

Lindsay M. Merrill

Laura R. Van Zoest

Shari L. Stockero

Year
2020
Short Description

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Articulating the Student Mathematics in Student Contributions

We draw on our experiences researching teachers’ use of student thinking to theoretically unpack the work of attending to student contributions in order to articulate the student mathematics (SM) of those contribution.

Author/Presenter

Laura R. Van Zoest

Shari L. Stockero

Keith R. Leatham

Blake E. Peterson

Joshua M. Ruk

Year
2020
Short Description

We draw on our experiences researching teachers’ use of student thinking to theoretically unpack the work of attending to student contributions in order to articulate the student mathematics (SM) of those contribution.

Articulating the Student Mathematics in Student Contributions

We draw on our experiences researching teachers’ use of student thinking to theoretically unpack the work of attending to student contributions in order to articulate the student mathematics (SM) of those contribution.

Author/Presenter

Laura R. Van Zoest

Shari L. Stockero

Keith R. Leatham

Blake E. Peterson

Joshua M. Ruk

Year
2020
Short Description

We draw on our experiences researching teachers’ use of student thinking to theoretically unpack the work of attending to student contributions in order to articulate the student mathematics (SM) of those contribution.

Articulating the Student Mathematics in Student Contributions

We draw on our experiences researching teachers’ use of student thinking to theoretically unpack the work of attending to student contributions in order to articulate the student mathematics (SM) of those contribution.

Author/Presenter

Laura R. Van Zoest

Shari L. Stockero

Keith R. Leatham

Blake E. Peterson

Joshua M. Ruk

Year
2020
Short Description

We draw on our experiences researching teachers’ use of student thinking to theoretically unpack the work of attending to student contributions in order to articulate the student mathematics (SM) of those contribution.

Think Alouds: Informing Scholarship and Broadening Partnerships through Assessment

Think alouds are valuable tools for academicians, test developers, and practitioners as they provide a unique window into a respondent’s thinking during an assessment. The purpose of this special issue is to highlight novel ways to use think alouds as a means to gather evidence about respondents’ thinking. An intended outcome from this special issue is that readers may better understand think alouds and feel better equipped to use them in practical and research settings.

Author/Presenter

Jonathan David Bostic

Lead Organization(s)
Year
2021
Short Description

Introduction to special issue focusing on think alouds and response process evidence. This work cuts across STEM education scholarship and introduces readers to robust means to engage in think alouds.

“Teaching Them How to Fish”: Learning to Learn and Teach Responsively

The Responsive Math Teaching (RMT) project’s 3-year model for professional development introduces teachers to a new instructional model through a full year of monthly Math Circles, where they experience problem solving and productive struggle from the student perspective while working through challenging open-ended tasks, engaging in mathematical discussions, and reflecting on the process. This paper examines teachers’ views of what they learned from this experience and how it affected both their instructional practices and their visions of mathematics teaching and learning.
Author/Presenter

Caroline B. Ebby

Brittany Hess

Lizzy Pecora

Jennifer Valerio

Lead Organization(s)
Year
2021
Short Description

The Responsive Math Teaching (RMT) project’s 3-year model for professional development introduces teachers to a new instructional model through a full year of monthly Math Circles, where they experience problem solving and productive struggle from the student perspective while working through challenging open-ended tasks, engaging in mathematical discussions, and reflecting on the process. This paper examines teachers’ views of what they learned from this experience and how it affected both their instructional practices and their visions of mathematics teaching and learning.

Toward a Productive Definition of Technology in Science and STEM Education

The lack of a definition of the T in STEM (science, technology, engineering, and mathematics) acronym is pervasive, and it is often the teachers of STEM disciplines who inherit the task of defining the role of technology within their K-12 classrooms. These definitions often vary significantly, and they have profound implications for curricular and instructional goals within science and STEM classrooms.

Author/Presenter

Joshua Ellis

Jeanna Wieselmann

Ramya Sivaraj

Gillian Roehrig

Emily Dare

Elizabeth Ring-Whalen

Year
2020
Short Description

This theoretical paper summarizes of technology initiatives across science and STEM education from the past 30 years to present perspectives on the role of technology in science-focused STEM education.