Our planet’s surface is in constant motion. Large pieces of Earth’s crust and upper mantle, known as tectonic plates, continually move toward and away from each other at a rate of millimeters to centimeters each year. Over geologic time, their relative motions determine everything from the types of boundaries they form to the distribution of rocks and landforms on Earth’s surface and the location and frequency of earthquake and volcanic eruptions. Plate tectonic theory, the organizing paradigm that revolutionized geosciences, describes the plate and mantle system and is used to reason about how plate movements and interactions can explain where geological phenomena occur and why Earth looks the way it does. The goal of our National Science Foundation-funded Geological Models for Exploration of Dynamic Earth (GEODE) project is to help students use plate tectonics as an explanation for the landforms and geological phenomena observed on Earth’s surface.
Pallant, A., & Lee, H.-S. (2021). Everything happens for a reason: Developing causal mechanistic reasoning of plate tectonics. @Concord, 25(1), 8-9.