CA STEM Smart Workshop
Sponsored by the National Science Foundation and organized by CADRE, this event will focus on standards-based instructional materials.
Sponsored by the National Science Foundation and organized by CADRE, this event will focus on standards-based instructional materials.
Since 2009, the NSF has required that all grant applicants requesting funding to support postdoc researchers submit
This CADRE brief looks at the key elements and broader impacts of mentoring a postdoctoral/early career researcher.
This article introduces an interview-based instrument that was created for the purposes of characterizing the visions of high-quality mathematics instruction of teachers, principals, mathematics coaches, and district leaders and tracking changes in those visions over time. The instrument models trajectories of perceptions of high-quality instruction along what have been identified in the literature as critical dimensions of mathematics classroom practice.
A key aspect of supporting teachers’ learning on a large scale concerns mathematics leaders’ practices in designing for and leading high-quality professional development. We report on a retrospective analysis of an initial design experiment aimed at supporting the learning of three math leaders who were charged with supporting the learning of middle-grades mathematics teachers across a large US school district.
This paper explores how robotics can be used as a new educational tool in a Montessori early education classroom. It presents a case study of one early educator’s experience of designing and implementing a robotics curriculum integrated with a social science unit in her mixed-age classroom. This teacher had no prior experience using robotics in the classroom beyond a three-day professional development workshop. The case study was constructed by collecting data from surveys, interviews, and a personal blog written by the teacher documenting her experience.
This paper explores how robotics can be used as a new educational tool in a Montessori early education classroom.
Argumentation is central to instruction centered on socio-scientific issues (Sadler & Donnelly in International Journal of Science Education, 28(12), 1463–1488, 2006. doi:10.1080/09500690600708717). Teachers can play a big role in helping students engage in argumentation and solve authentic scientific problems. To do so, they need to learn one-to-one scaffolding—dynamic support to help students accomplish tasks that they could not complete unaided.
From the perspectives of Graduate Research Assistants (GRAs), this study examines the design and implementation of a simulated teaching environment in Second Life (SL) for prospective teachers to teach algebra for diverse learners. Drawing upon the Learning-for-Use framework, the analyses provide evidence on the development of student avatars in construction and role-playing activities. The study reveals challenges, procedures, and suggestions for future simulations. This study also calls for research efforts toward preparing mathematics teachers for cultural diversity.
This study examines the design and implementation of a simulated teaching environment in Second Life for prospective teachers.
In this essay, the authors share a professional dialogue about the ways in which issues of power emerge in preschool classrooms when teachers endeavor to build on childrens home and school mathematical experiences and understanding. From different perspectives, as early childhood and mathematics education researchers, the authors discuss ways in which data from teacher interviews and discussions collected during a professional development program provide evidence of whose knowledge is privileged.
Many national initiatives in K-12 science, technology, engineering, and mathematics (STEM) education have emphasized the connections between teachers and improved student learning. Much of the discussion surrounding these initiatives has focused on the preparation, professional development, evaluation, compensation, and career advancement of teachers. Yet one critical set of voices has been largely missing from this discussion - that of classroom teachers themselves.
While access to computers, other technologies, and cyber-enabled resources that could be leveraged for enhancing student learning in science is increasing, generally it has been found that teachers use technology more for administrative purposes or to support traditional instruction. This use of technology, especially to support traditional instruction, sits in opposition to most recent standards documents in science education that call for student involvement in evidence-based sense-making activities.