Curriculum

I-Engineering Curriculum Resources

In the "How can I make my classroom more sustainable?" unit,  teachers and students collaboratively investigate how to make their classrooms more sustainable.  Using the teaching/learning process of Engineering for Sustainable Communities (EfSC), and two design challenges, students engage meaningfully in both the practices of engineering and the disciplinary core ideas of energy systems, transformations and sources (within the contexts of circuitry & renewable energy).

Author/Presenter

The I-Engineering Team

Lead Organization(s)
Year
2019
Short Description

In the "How can I make my classroom more sustainable?" unit,  teachers and students collaboratively investigate how to make their classrooms more sustainable.  Using the teaching/learning process of Engineering for Sustainable Communities (EfSC), and two design challenges, students engage meaningfully in both the practices of engineering and the disciplinary core ideas of energy systems, transformations and sources (within the contexts of circuitry & renewable energy). To make engineering more accessible to a wider range of learners, I-Engineering situates the engineering work in real world contexts and constraints, and focuses on both the technical and social dimensions to design work.

Mathematically Captivating Learning Experiences

Learning experiences that spur student curiosity, captivate students with complex mathematical content, and compel students to engage and persevere (referred to as “mathematically captivating learning experiences” or “MCLEs”).

Author/Presenter

The MCLE Team

Lead Organization(s)
Year
2019
Short Description

Learning experiences that spur student curiosity, captivate students with complex mathematical content, and compel students to engage and persevere (referred to as “mathematically captivating learning experiences” or “MCLEs”). Designed using mathematical story framework, the content within mathematical lessons (both planned and enacted) is framed as mathematical stories and the felt tension between how information is revealed and withheld from students as the mathematical story unfolds is framed as its mathematical plot.

Getting Unstuck Scratch Curriculum

Getting Unstuck is a 10-module intermediate Scratch curriculum to help your students develop greater creative and conceptual fluency with code. The curriculum reimagines the classroom as a design studio: a culture of learning in which students explore, create, share, and reflect. Get started with the curriculum by reading the orientation, then explore the modules.

Author/Presenter

The Getting Unstuck Team

Lead Organization(s)
Year
2021
Short Description

Getting Unstuck is a 10-module intermediate Scratch curriculum to help your students develop greater creative and conceptual fluency with code. The curriculum reimagines the classroom as a design studio: a culture of learning in which students explore, create, share, and reflect. Get started with the curriculum by reading the orientation, then explore the modules.

STEP UP Curriculum

High school physics lessons designed to empower teachers, create cultural change, and inspire young women to pursue physics in college. The lessons build a counternarrative in the classroom, dismantling the commonly-held stereotypes of what physics is and who physicists are, which opens possibilities in students’ minds for pursuing physics in college.

Author/Presenter

The STEP UP Team

Year
2019
Short Description

High school physics lessons designed to empower teachers, create cultural change, and inspire young women to pursue physics in college. The lessons build a counternarrative in the classroom, dismantling the commonly-held stereotypes of what physics is and who physicists are, which opens possibilities in students’ minds for pursuing physics in college.

STEP UP Curriculum

High school physics lessons designed to empower teachers, create cultural change, and inspire young women to pursue physics in college. The lessons build a counternarrative in the classroom, dismantling the commonly-held stereotypes of what physics is and who physicists are, which opens possibilities in students’ minds for pursuing physics in college.

Author/Presenter

The STEP UP Team

Year
2019
Short Description

High school physics lessons designed to empower teachers, create cultural change, and inspire young women to pursue physics in college. The lessons build a counternarrative in the classroom, dismantling the commonly-held stereotypes of what physics is and who physicists are, which opens possibilities in students’ minds for pursuing physics in college.

STEP UP Curriculum

High school physics lessons designed to empower teachers, create cultural change, and inspire young women to pursue physics in college. The lessons build a counternarrative in the classroom, dismantling the commonly-held stereotypes of what physics is and who physicists are, which opens possibilities in students’ minds for pursuing physics in college.

Author/Presenter

The STEP UP Team

Year
2019
Short Description

High school physics lessons designed to empower teachers, create cultural change, and inspire young women to pursue physics in college. The lessons build a counternarrative in the classroom, dismantling the commonly-held stereotypes of what physics is and who physicists are, which opens possibilities in students’ minds for pursuing physics in college.

STEP UP Curriculum

High school physics lessons designed to empower teachers, create cultural change, and inspire young women to pursue physics in college. The lessons build a counternarrative in the classroom, dismantling the commonly-held stereotypes of what physics is and who physicists are, which opens possibilities in students’ minds for pursuing physics in college.

Author/Presenter

The STEP UP Team

Year
2019
Short Description

High school physics lessons designed to empower teachers, create cultural change, and inspire young women to pursue physics in college. The lessons build a counternarrative in the classroom, dismantling the commonly-held stereotypes of what physics is and who physicists are, which opens possibilities in students’ minds for pursuing physics in college.

Mathematical and Computational Methods for Planning a Sustainable Future (PS-Future)

Instructional modules that bring sustainability topics into classrooms in a way that emphasizes the methods and tools of mathematics and computing and illustrates their role in planning for sustainability. Through the modules, students learn foundational and emerging concepts in mathematical and computational sciences set in the context of sustainability issues involving physical, biological, environmental, and social sciences.

Author/Presenter

The PS-Future Team

Year
2018
Short Description

Instructional modules that bring sustainability topics into classrooms in a way that emphasizes the methods and tools of mathematics and computing and illustrates their role in planning for sustainability. Through the modules, students learn foundational and emerging concepts in mathematical and computational sciences set in the context of sustainability issues involving physical, biological, environmental, and social sciences. Students develop an increasingly sophisticated understanding of the ways that these disciplines interact through inquiries driven by real problems such as combating invasive species, understanding environmental threats, managing water resources, interpreting weather data, and simply living greener.

Mathematical and Computational Methods for Planning a Sustainable Future (PS-Future)

Instructional modules that bring sustainability topics into classrooms in a way that emphasizes the methods and tools of mathematics and computing and illustrates their role in planning for sustainability. Through the modules, students learn foundational and emerging concepts in mathematical and computational sciences set in the context of sustainability issues involving physical, biological, environmental, and social sciences.

Author/Presenter

The PS-Future Team

Year
2018
Short Description

Instructional modules that bring sustainability topics into classrooms in a way that emphasizes the methods and tools of mathematics and computing and illustrates their role in planning for sustainability. Through the modules, students learn foundational and emerging concepts in mathematical and computational sciences set in the context of sustainability issues involving physical, biological, environmental, and social sciences. Students develop an increasingly sophisticated understanding of the ways that these disciplines interact through inquiries driven by real problems such as combating invasive species, understanding environmental threats, managing water resources, interpreting weather data, and simply living greener.

Animated Contrasting Cases in Geometry

In this collection of materials, four geometric topics are covered in animated, digital materials.

Author/Presenter

Erin Krupa

Jon Star

Brianna Bentley

Josh Mannix

Year
2019
Short Description

In this collection of materials, four geometric topics are covered in animated, digital materials. There are also paper-based materials for the four geometric topics: Angles, Transformations, Pythagorean Theorem, and Volume. These topics are discussed in scenarios of contrasting cases, where two fictional students each present a unique method or solution strategy to the same problem. The goal is then to analyze both methods and discuss similarities and differences, strengths and weaknesses of each.