Middle

NLP-Enabled Automated Assessment of Scientific Explanations: Towards Eliminating Linguistic Discrimination

As use of artificial intelligence (AI) has increased, concerns about AI bias and discrimination have been growing. This paper discusses an application called PyrEval in which natural language processing (NLP) was used to automate assessment and provide feedback on middle school science writing without linguistic discrimination. Linguistic discrimination in this study was operationalized as unfair assessment of scientific essays based on writing features that are not considered normative such as subject-verb disagreement.

Author/Presenter

ChanMin Kim

Rebecca J. Passonneau

Eunseo Lee

Mahsa Sheikhi Karizaki

Dana Gnesdilow

Sadhana Puntambekar

Year
2025
Short Description

As use of artificial intelligence (AI) has increased, concerns about AI bias and discrimination have been growing. This paper discusses an application called PyrEval in which natural language processing (NLP) was used to automate assessment and provide feedback on middle school science writing without linguistic discrimination.

Integrating Math and Science Through Engineering: Illustrative Examples from Curricula Implementation in Middle School Engineering Classrooms

Engineering has emerged as a promising context for STEM integration in K-12 schools. In the previous decade, the field has seen an increase in curricular resources and pedagogical approaches that invite students to utilize mathematics and science as they engage in engineering practices. This Innovation to Practice paper highlights one effort to meaningfully integrate mathematics and science through engineering in middle school classrooms. The STEM-ID engineering course sequence consists of three 18-week middle school engineering courses.

Author/Presenter

Jessica Gale

Dyanne Baptiste Porter

Meltem Alemdar

Sunni Newton

Jasmine Choi

Abeera Rehmat

Roxanne Moore

Year
2025
Short Description

Engineering has emerged as a promising context for STEM integration in K-12 schools. In the previous decade, the field has seen an increase in curricular resources and pedagogical approaches that invite students to utilize mathematics and science as they engage in engineering practices. This Innovation to Practice paper highlights one effort to meaningfully integrate mathematics and science through engineering in middle school classrooms.

Integrating Community Assets, Place-based Learning, and Career Development Through Project-based Learning in Rural Settings

Our study investigates the first year of a two-year place-based education (PBE) professional development model that focuses on career development in rural middle schools through project-based learning (PBL) units. Rural science, technology, engineering, and mathematics (STEM) educators face unique challenges, including geographic isolation, limited resources, and reduced access to professional development opportunities, which can hinder the effective integration of career-oriented learning in the classroom.

Author/Presenter

DeNae Kizys

Christine Lotter

Lucas Perez

Rachel Gilreath

Dodie Limberg

Lead Organization(s)
Year
2025
Short Description

Our study investigates the first year of a two-year place-based education (PBE) professional development model that focuses on career development in rural middle schools through project-based learning (PBL) units. Rural science, technology, engineering, and mathematics (STEM) educators face unique challenges, including geographic isolation, limited resources, and reduced access to professional development opportunities, which can hinder the effective integration of career-oriented learning in the classroom. We addressed these challenges by implementing professional development in which school counselors and teachers collaborate to design PBL units aligned with rural community local needs and STEM careers.

A Usability Analysis and Consequences of Testing Exploration of the Problem-Solving Measures–Computer-Adaptive Test

Testing is a part of education around the world; however, there are concerns that consequences of testing is underexplored within current educational scholarship. Moreover, usability studies are rare within education. One aim of the present study was to explore the usability of a mathematics problem-solving test called the Problem Solving Measures–Computer-Adaptive Test (PSM-CAT) designed for grades six to eight students (ages 11–14).

Author/Presenter

Sophie Grace King

Jonathan David Bostic

Toni A. May

Gregory E. Stone

Year
2025
Short Description

Testing is a part of education around the world; however, there are concerns that consequences of testing is underexplored within current educational scholarship. Moreover, usability studies are rare within education. One aim of the present study was to explore the usability of a mathematics problem-solving test called the Problem Solving Measures–Computer-Adaptive Test (PSM-CAT) designed for grades six to eight students (ages 11–14). The second aim of this mixed-methods research was to unpack consequences of testing validity evidence related to the results and test interpretations, leveraging the voices of participants.

A Usability Analysis and Consequences of Testing Exploration of the Problem-Solving Measures–Computer-Adaptive Test

Testing is a part of education around the world; however, there are concerns that consequences of testing is underexplored within current educational scholarship. Moreover, usability studies are rare within education. One aim of the present study was to explore the usability of a mathematics problem-solving test called the Problem Solving Measures–Computer-Adaptive Test (PSM-CAT) designed for grades six to eight students (ages 11–14).

Author/Presenter

Sophie Grace King

Jonathan David Bostic

Toni A. May

Gregory E. Stone

Year
2025
Short Description

Testing is a part of education around the world; however, there are concerns that consequences of testing is underexplored within current educational scholarship. Moreover, usability studies are rare within education. One aim of the present study was to explore the usability of a mathematics problem-solving test called the Problem Solving Measures–Computer-Adaptive Test (PSM-CAT) designed for grades six to eight students (ages 11–14). The second aim of this mixed-methods research was to unpack consequences of testing validity evidence related to the results and test interpretations, leveraging the voices of participants.

A Usability Analysis and Consequences of Testing Exploration of the Problem-Solving Measures–Computer-Adaptive Test

Testing is a part of education around the world; however, there are concerns that consequences of testing is underexplored within current educational scholarship. Moreover, usability studies are rare within education. One aim of the present study was to explore the usability of a mathematics problem-solving test called the Problem Solving Measures–Computer-Adaptive Test (PSM-CAT) designed for grades six to eight students (ages 11–14).

Author/Presenter

Sophie Grace King

Jonathan David Bostic

Toni A. May

Gregory E. Stone

Year
2025
Short Description

Testing is a part of education around the world; however, there are concerns that consequences of testing is underexplored within current educational scholarship. Moreover, usability studies are rare within education. One aim of the present study was to explore the usability of a mathematics problem-solving test called the Problem Solving Measures–Computer-Adaptive Test (PSM-CAT) designed for grades six to eight students (ages 11–14). The second aim of this mixed-methods research was to unpack consequences of testing validity evidence related to the results and test interpretations, leveraging the voices of participants.

A Usability Analysis and Consequences of Testing Exploration of the Problem-Solving Measures–Computer-Adaptive Test

Testing is a part of education around the world; however, there are concerns that consequences of testing is underexplored within current educational scholarship. Moreover, usability studies are rare within education. One aim of the present study was to explore the usability of a mathematics problem-solving test called the Problem Solving Measures–Computer-Adaptive Test (PSM-CAT) designed for grades six to eight students (ages 11–14).

Author/Presenter

Sophie Grace King

Jonathan David Bostic

Toni A. May

Gregory E. Stone

Year
2025
Short Description

Testing is a part of education around the world; however, there are concerns that consequences of testing is underexplored within current educational scholarship. Moreover, usability studies are rare within education. One aim of the present study was to explore the usability of a mathematics problem-solving test called the Problem Solving Measures–Computer-Adaptive Test (PSM-CAT) designed for grades six to eight students (ages 11–14). The second aim of this mixed-methods research was to unpack consequences of testing validity evidence related to the results and test interpretations, leveraging the voices of participants.

Textbooks as a Resource for Teaching Mathematics Through Problem Posing: Catalyzing Instructional Change

Research has shown that teaching mathematics through problem posing, or problem-posing based learning (P-PBL), is a student-centered instructional approach that can improve students’ cognitive and affective aspects of learning. However, since textbooks continue to include very few opportunities for problem posing, researchers have been working to support teachers to integrate problem posing into classroom instruction, drawing on textbooks as a resource.

Author/Presenter

Stephen Hwang

Jaepil Han

Faith Muirhead

Amy Brown

Matthew Melville

Jinfa Cai

Lead Organization(s)
Year
2025
Short Description

Research has shown that teaching mathematics through problem posing, or problem-posing based learning (P-PBL), is a student-centered instructional approach that can improve students’ cognitive and affective aspects of learning. However, since textbooks continue to include very few opportunities for problem posing, researchers have been working to support teachers to integrate problem posing into classroom instruction, drawing on textbooks as a resource. In this paper, we describe how teachers in the P-PBL Project have engaged in instructional change with support from researchers around a high-quality middle school mathematics textbook series.

Restructuring the Science Curriculum Around Grand Challenges

Grand Challenges (GCs) are complex, global, and multifaceted science and societal problems such as climate change, viral pandemics, loss of biodiversity, and quests for new energy sources. In this article, we advance a position, based on current research and theory, that GCs should be a prominent feature of the science curriculum. This move towards a GC-based curriculum challenges the positioning of canonical scientific concepts as the central organising feature of the curriculum, which is typically the default position of most science education programmes.

Author/Presenter

Troy D. Sadler

Zhen Xu

David Fortus

Year
2025
Short Description

Grand Challenges (GCs) are complex, global, and multifaceted science and societal problems such as climate change, viral pandemics, loss of biodiversity, and quests for new energy sources. In this article, we advance a position, based on current research and theory, that GCs should be a prominent feature of the science curriculum. This move towards a GC-based curriculum challenges the positioning of canonical scientific concepts as the central organising feature of the curriculum, which is typically the default position of most science education programmes.

Learning Science and Engineering by Designing Sustainable Houses

Science and engineering offer ways to maintain the thermal comfort of our homes while minimizing impacts on the environment. This article introduces the Energy-Plus House Design Project, an NGSS-aligned curriculum unit developed to inspire and prepare high school students for tackling this challenge. In this project, students learn and practice science and engineering by designing a house that generates more renewable energy than it consumes over the course of a year (hence known as an energy-plus house).

Author/Presenter

Elena Sereiviene

Xiaotong Ding

Rundong Jiang

Dylan Bulseco

Charles Xie

Year
2025
Short Description

Science and engineering offer ways to maintain the thermal comfort of our homes while minimizing impacts on the environment. This article introduces the Energy-Plus House Design Project, an NGSS-aligned curriculum unit developed to inspire and prepare high school students for tackling this challenge. In this project, students learn and practice science and engineering by designing a house that generates more renewable energy than it consumes over the course of a year (hence known as an energy-plus house).