High

Broadening Participation — Making STEM Learning Relevant and Rigorous for All Students

This CADRE brief explores factors that contribute to opportunity gaps in STEM education based on race, ethnicity, gender, ability, and socioeconomic status. It showcases the work of several DR K-12 projects and describes promising approaches for removing barriers for underrepresented groups and enhancing the STEM learning of all students.

Author/Presenter

CADRE

Year
2015
Short Description

This brief explores factors that contribute to opportunity gaps in STEM education based on race, ethnicity, gender, ability, and socioeconomic status. It showcases the work of several DR K-12 projects and describes promising approaches for removing barriers for underrepresented groups and enhancing the STEM learning of all students.

The Impact of Information and Communication Technology (ICT) Usage on Psychological Well-Being among Urban Youth

Coleman, L. O., Hale, T. M., Cotten, S. R., Gibson, P. (2015), The Impact of Information and Communication Technology (ICT) Usage on Psychological Well-Being among Urban Youth. In Sampson Lee Blair , Patricia Neff Claster , Samuel M. Claster (ed.) Technology and Youth: Growing Up in a Digital World (Sociological Studies of Children and Youth, Volume 19) Emerald Group Publishing Limited, pp. 267-291.

Author/Presenter

LaToya O’Neal Coleman

Timothy M. Hale

Shelia R. Cotten

Philip Gibson

Lead Organization(s)
Year
2015
Short Description

Information and communication technology (ICT) usage is pervasive among present day youth, with about 95% of youth ages 12-17 years reporting use of the Internet. Due to the proliferation of ICT use among this generation, it is important to understand the impacts of ICT usage on well-being. The goal of this study was to determine the impact of ICT usage on psychological well-being among a sample of urban, predominately African American youth.

STEM-focused high schools as a strategy for enhancing readiness for postsecondary STEM programs

Means, B., Wang, H., Young, V., Peters, V. & Lynch, S. J. (2016). STEM-focused high schools as a strategy for enhancing readiness for postsecondary STEM programs. Journal of Research in Science Teaching. DOI: 10.1002/tea.21313

Author/Presenter

Barbara Means

Haiwen Wang

Viki Young

Vanessa L. Peters

Sharon J. Lynch

Year
2016
Short Description

The logic underlying inclusive STEM high schools (ISHSs) posits that requiring all students to take advanced college preparatory STEM courses while providing student-centered, reform-oriented instruction, ample student supports, and real-world STEM experiences and role models will prepare and inspire students admitted on the basis of STEM interest rather than prior achievement for postsecondary STEM. This study tests that logic model by comparing the high school experiences and achievement of students in ISHSs and comparison schools in North Carolina. After identifying ISHS and non-STEM comparison high schools serving students who were similar in terms of socioeconomic status and academic achievement prior to high school entry, we employed propensity-score weighting and HLM modeling to estimate the impact of attending an ISHS on a set of outcome measures obtained from student surveys and from the state's longitudinal student data system. Analyses of student survey data found that attending an ISHS raises the likelihood that a student will complete pre-calculus or calculus and chemistry in high school, leads to increased involvement in STEM extracurricular and out-of-class activities, and enhances interest in science careers and aspirations to earn a master's or higher degree. Analyses of student outcome data from state administrative records revealed a positive impact of inclusive STEM high school attendance on grade point average (GPA) but not on ACT scores.

Valuing student ideas morally, instrumentally, and intellectually

Robertson, A. D. (2016). Valuing student ideas morally, instrumentally, and intellectually. Proceedings of the 2015 Physics Education Research Conference (pp. 275-278). College Park, MD: American Institute of Physics.

Author/Presenter

Amy D. Robertson

Lead Organization(s)
Year
2016
Short Description

The importance of valuing student ideas in science education stands on firm empirical, theoretical, and moral grounds. However, the reasons for which one might value student ideas are often not explicitly distinguished, even if implicit distinctions are made in the literature. In this paper, I define and distinguish between three ways of valuing student ideas – moral, instrumental, and intellectual – and I suggest implications of these distinctions for teacher education and research.

Productivity of “collisions generate heat” for reconciling an energy model with mechanistic reasoning: A case study

Scherr, R. E. & Robertson, A. D. (2015). The productivity of ‘collisions generate heat’ for reconciling an energy model with mechanistic reasoning: A case study. Physical Review Special Topics – Physics Education Research 11(1), 010111-1 – 010111-16.

Author/Presenter

Rachel E. Scherr

Amy D. Robertson

Lead Organization(s)
Year
2015
Short Description

We observe teachers in professional development courses about energy constructing mechanistic accounts of energy transformations. We analyze a case in which teachers investigating adiabatic compression develop a model of the transformation of kinetic energy to thermal energy. Among their ideas is the idea that thermal energy is generated as a byproduct of individual particle collisions, which is represented in science education research literature as an obstacle to learning. We demonstrate that in this instructional context, the idea that individual particle collisions generate thermal energy is not an obstacle to learning, but instead is productive: it initiates intellectual progress. Specifically, this idea initiates the reconciliation of the teachers’ energy model with mechanistic reasoning about adiabatic compression, and leads to a canonically correct model of the transformation of kinetic energy into thermal energy. We claim that the idea’s productivity is influenced by features of our particular instructional context, including the instructional goals of the course, the culture of collaborative sense making, and the use of certain representations of energy.

Promoting productive mathematical discourse: Tasks in collaborative digital environments

Powell, A. B., & Alqahtani, M. M. (2015). Promoting productive mathematical discourse: Tasks in collaborative digital environments. In T. G. Bartell, K. N. Bieda, R. T. Putnam, K. Bradfield, & H. Dominguez (Eds.), Proceedings of the 37th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1246-1249). East Lansing, MI: Michigan State University.

Author/Presenter

Arthur B. Powell

Muteb M. Alqahtani

Lead Organization(s)
Year
2015
Short Description

Tasks can be vehicles for productive mathematical discussions. How to support such discourse in collaborative digital environments is the focus of our theorization and empirical examination of task design that emerges from a larger research project. We present our task design principles that developed through an iterative research design for a project that involves secondary teachers in online courses to learn discursively dynamic geometry by collaborating on construction and problem-solving tasks in a cyber learning environment. In this study, we discuss a task and the collaborative work of a team of teachers to illustrate relationships between the task design and productive mathematical discourse. Implications suggest further investigations into interactions between characteristics of task design and learners mathematical activity.

Instrumental development of teachers’ reasoning in dynamic geometry

Alqahtani, M. M., & Powell, A. B. (2015, March). Instrumental development of teachers’ reasoning in dynamic geometry. Paper presented at the 2015 annual meeting of the American Educational Research Association, Chicago, IL.

Author/Presenter

Muteb M. Alqahtani

Arthur B. Powell

Lead Organization(s)
Year
2015
Short Description

To contribute to understanding how teachers can develop geometrical understanding, we report on the discursive development of teachers’ geometrical reasoning through instrument appropriation while collaborating in an online dynamic geometry environment (DGE). Using the theory of instrument-mediated activity, we analysis the discourse and DGE actions of a group of middle and high school mathematics teachers who participated in a semester-long, professional development course. Working in small teams, they collaborated to solve geometric problems. Our results show that as teachers appropriate DGE artifacts and transform its components into instruments, they develop their geometrical knowledge and reasoning in dynamic geometry. Our study contributes to a broad understanding of how teachers develop mathematical knowledge for teaching.

Tasks promoting productive mathematical discourse in collaborative digital environments

Powell, A. B., & Alqahtani, M. M. (2015). Tasks promoting productive mathematical discourse in collaborative digital environments. In N. Amado & S. Carreira (Eds.), Proceedings of the 12th International Conference on Technology in Mathematics Teaching. (pp. 68-76). Faro, Portugal: Universidade do Algarve.

Author/Presenter

Arthur B. Powell

Muteb M. Alqahtani

Lead Organization(s)
Year
2015
Short Description

Rich tasks can be vehicles for productive mathematical discussions. How to support such discourse in collaborative digital environments is the focus of our theorization and empirical examination of task design that emerges from a larger research project. We present the theoretical foundations of our task design principles that developed through an iterative research design for a project that involves secondary teachers in online courses to learn discursively dynamic geometry by collaborating on construction and problem-solving tasks in a cyberlearning environment. In this study, we discuss a task and the collaborative work of a team of teachers to illustrate relationships between the task design, productive mathematical discourse, and the development of new mathematics knowledge for the teachers. Implications of this work suggest further investigations into interactions between characteristics of task design and learners mathematical activity.

Teachers’ support of students’ instrumentation in a collaborative, dynamic geometry environment

Alqahtani, M. M., & Powell, A. B. (2015). Teachers’ support of students’ instrumentation in a collaborative, dynamic geometry environment. In N. Amado & S. Carreira (Eds.), Proceedings of the 12th International Conference on Technology in Mathematics Teaching. (pp. 268-276). Faro, Portugal: Universidade do Algarve.

Author/Presenter

Muteb M. Alqahtani

Arthur B. Powell

Lead Organization(s)
Year
2015
Short Description

We report on a case study that seeks to understand how teachers’ pedagogical interventions influence students’ instrumentation and mathematical reasoning in a collaborative, dynamic geometry environment. A high school teacher engaged a class of students in the Virtual Math Teams with GeoGebra environment (VMTwG) to solve geometrical tasks. The VMTwG allows users to share both GeoGebra and chat windows to engage in joint problem solving. Our analysis of the teacher’s implementation and students’ interactions in VMTwG shows that his instrumental orchestration (Trouche, 2004, 2005) supported students’ instrumentation (Rabardel & Beguin, 2005) and shaped their movement between empirical explorations and deductive justifications. This study contributes to understanding the interplay between a teacher’s instrumental orchestration and students’ instrumentation and movement towards more deductive justifications.

Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models

Pallant, A., & Lee H.-S. (2015). Constructing scientific arguments using evidence from dynamic computational climate models. Journal of Science Education and Technology. 24 (2-3) 378-395. doi 10.1007/s10956-014-9499-3.

Author/Presenter

Amy Pallant

Hee-Sun Lee

Lead Organization(s)
Year
2014
Short Description

Modeling and argumentation are two important scientific practices students need to develop throughout school years. In this paper, we investigated how middle and high school students (N=512) construct a scientific argument based on evidence from computational models with which they simulated climate change. We designed scientific argumentation tasks with three increasingly complex dynamic climate models. Each scientific argumentation task consisted of four parts: multiple-choice claim, open ended explanation, five-point Likert scale uncertainty rating, and open-ended uncertainty rationale.
We coded 1,294 scientific arguments in terms of a claim’s consistency with current scientific consensus, whether explanations were model based or knowledge based and categorized the sources of uncertainty (personal vs. scientific). We used chi-square and ANOVA tests to identify significant patterns. Results indicate that (1) a majority of students incorporated models as evidence to support their claims, (2) most students used model output results shown on graphs to confirm their claim rather than to explain simulated molecular processes, (3) students’ dependence on model results and their uncertainty rating diminished as the dynamic climate models became more and more complex, (4) some students’ misconceptions interfered with observing and interpreting model results or simulated processes, and (5) students’ uncertainty sources reflected more frequently on their assessment of personal knowledge or abilities related to the tasks than on their critical examination of scientific evidence resulting from models. These findings have implications for teaching and research related to the integration of scientific argumentation and modeling practices to address complex Earth systems.