Pedagogy

Developing Transmedia Engineering Curricula Using Cognitive Tools to Impact Learning and the Development of STEM Identity

This paper examines the use of Imaginative Education (IE) to create an NGSS-aligned middle school engineering curriculum that supports transfer and the development of STEM identity. In IE, cognitive tools—such as developmentally appropriate narratives, mysteries and fantasies—are used to design learning environments that both engage learners and help them organize knowledge productively. We have combined IE with transmedia storytelling to develop two multi-week engineering units and six shorter engineering lessons.

Author/Presenter

Glenn W. Ellis

Jeremiah Pina

Rebecca Mazur

Al Rudnitsky

Beth McGinnis-Cavanaugh

Isabel Huff

Sonia Ellis

Crystal M. Ford

Kate Lytton

Kaia Claire Cormier

Year
2020
Short Description

This paper examines the use of Imaginative Education (IE) to create an NGSS-aligned middle school engineering curriculum that supports transfer and the development of STEM identity.

Resource(s)

Teachers' Responses to Instances of Student Mathematical Thinking with Varied Potential to Support Student Learning

Teacher responses to student mathematical thinking (SMT) matter because the way in which teachers respond affects student learning. Although studies have provided important insights into the nature of teacher responses, little is known about the extent to which these responses take into account the potential of the instance of SMT to support learning. This study investigated teachers’ responses to a common set of instances of SMT with varied potential to support students’ mathematical learning, as well as the productivity of such responses.

Author/Presenter

Shari L. Stockero

Laura R. Van Zoest

Ben Freeburn

Blake E. Peterson

Keith R. Leatham

Year
2020
Short Description

This study investigated teachers’ responses to a common set of instances of student mathematical thinking (SMT) with varied potential to support students’ mathematical learning, as well as the productivity of such responses.

Teachers' Responses to Instances of Student Mathematical Thinking with Varied Potential to Support Student Learning

Teacher responses to student mathematical thinking (SMT) matter because the way in which teachers respond affects student learning. Although studies have provided important insights into the nature of teacher responses, little is known about the extent to which these responses take into account the potential of the instance of SMT to support learning. This study investigated teachers’ responses to a common set of instances of SMT with varied potential to support students’ mathematical learning, as well as the productivity of such responses.

Author/Presenter

Shari L. Stockero

Laura R. Van Zoest

Ben Freeburn

Blake E. Peterson

Keith R. Leatham

Year
2020
Short Description

This study investigated teachers’ responses to a common set of instances of student mathematical thinking (SMT) with varied potential to support students’ mathematical learning, as well as the productivity of such responses.

Teachers' Responses to Instances of Student Mathematical Thinking with Varied Potential to Support Student Learning

Teacher responses to student mathematical thinking (SMT) matter because the way in which teachers respond affects student learning. Although studies have provided important insights into the nature of teacher responses, little is known about the extent to which these responses take into account the potential of the instance of SMT to support learning. This study investigated teachers’ responses to a common set of instances of SMT with varied potential to support students’ mathematical learning, as well as the productivity of such responses.

Author/Presenter

Shari L. Stockero

Laura R. Van Zoest

Ben Freeburn

Blake E. Peterson

Keith R. Leatham

Year
2020
Short Description

This study investigated teachers’ responses to a common set of instances of student mathematical thinking (SMT) with varied potential to support students’ mathematical learning, as well as the productivity of such responses.

Conceptualizing Important Facets of Teacher Responses to Student Mathematical Thinking

We argue that progress in the area of research on mathematics teacher responses to student thinking could be enhanced were the field to attend more explicitly to important facets of those responses, as well as to related units of analysis. We describe the Teacher Response Coding scheme (TRC) to illustrate how such attention might play out, and then apply the TRC to an excerpt of classroom mathematics discourse to demonstrate the affordances of this approach.
Author/Presenter

Laura R. Van Zoest

Blake E. Peterson

Annick O. T. Rougée

Shari L. Stockero

Keith R. Leatham

Ben Freeburn

Year
2021
Short Description

We argue that progress in the area of research on mathematics teacher responses to student thinking could be enhanced were the field to attend more explicitly to important facets of those responses, as well as to related units of analysis. We describe the Teacher Response Coding scheme (TRC) to illustrate how such attention might play out, and then apply the TRC to an excerpt of classroom mathematics discourse to demonstrate the affordances of this approach. We conclude by making several further observations about the potential versatility and power in articulating units of analysis and developing and applying tools that attend to these facets when conducting research on teacher responses.

Conceptualizing Important Facets of Teacher Responses to Student Mathematical Thinking

We argue that progress in the area of research on mathematics teacher responses to student thinking could be enhanced were the field to attend more explicitly to important facets of those responses, as well as to related units of analysis. We describe the Teacher Response Coding scheme (TRC) to illustrate how such attention might play out, and then apply the TRC to an excerpt of classroom mathematics discourse to demonstrate the affordances of this approach.
Author/Presenter

Laura R. Van Zoest

Blake E. Peterson

Annick O. T. Rougée

Shari L. Stockero

Keith R. Leatham

Ben Freeburn

Year
2021
Short Description

We argue that progress in the area of research on mathematics teacher responses to student thinking could be enhanced were the field to attend more explicitly to important facets of those responses, as well as to related units of analysis. We describe the Teacher Response Coding scheme (TRC) to illustrate how such attention might play out, and then apply the TRC to an excerpt of classroom mathematics discourse to demonstrate the affordances of this approach. We conclude by making several further observations about the potential versatility and power in articulating units of analysis and developing and applying tools that attend to these facets when conducting research on teacher responses.

Conceptualizing Important Facets of Teacher Responses to Student Mathematical Thinking

We argue that progress in the area of research on mathematics teacher responses to student thinking could be enhanced were the field to attend more explicitly to important facets of those responses, as well as to related units of analysis. We describe the Teacher Response Coding scheme (TRC) to illustrate how such attention might play out, and then apply the TRC to an excerpt of classroom mathematics discourse to demonstrate the affordances of this approach.
Author/Presenter

Laura R. Van Zoest

Blake E. Peterson

Annick O. T. Rougée

Shari L. Stockero

Keith R. Leatham

Ben Freeburn

Year
2021
Short Description

We argue that progress in the area of research on mathematics teacher responses to student thinking could be enhanced were the field to attend more explicitly to important facets of those responses, as well as to related units of analysis. We describe the Teacher Response Coding scheme (TRC) to illustrate how such attention might play out, and then apply the TRC to an excerpt of classroom mathematics discourse to demonstrate the affordances of this approach. We conclude by making several further observations about the potential versatility and power in articulating units of analysis and developing and applying tools that attend to these facets when conducting research on teacher responses.

Clarifiable Ambiguity in Classroom Mathematics Discourse

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Author/Presenter

Blake E. Peterson

Keith R. Leatham

Lindsay M. Merrill

Laura R. Van Zoest

Shari L. Stockero

Year
2020
Short Description

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Clarifiable Ambiguity in Classroom Mathematics Discourse

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Author/Presenter

Blake E. Peterson

Keith R. Leatham

Lindsay M. Merrill

Laura R. Van Zoest

Shari L. Stockero

Year
2020
Short Description

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Clarifiable Ambiguity in Classroom Mathematics Discourse

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Author/Presenter

Blake E. Peterson

Keith R. Leatham

Lindsay M. Merrill

Laura R. Van Zoest

Shari L. Stockero

Year
2020
Short Description

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.