High

Connected Biology

Connected Biology provides a sequence of lessons for high school biology that fosters integrated learning of genetics and evolution. This novel curriculum is aligned with Next Generation Science Standards (NGSS) performance expectations and supports students’ development of a model of the relationships between molecules, cells, organisms, and populations. The curriculum package includes online lessons, an interactive Teacher’s Edition, and a real-time Teacher Dashboard. Additional background materials and supplemental resources are also provided.

Author/Presenter

The Connected Biology Team

Year
2018
Short Description

Connected Biology provides a sequence of lessons for high school biology that fosters integrated learning of genetics and evolution. This novel curriculum is aligned with Next Generation Science Standards (NGSS) performance expectations and supports students’ development of a model of the relationships between molecules, cells, organisms, and populations. The curriculum package includes online lessons, an interactive Teacher’s Edition, and a real-time Teacher Dashboard. Additional background materials and supplemental resources are also provided.

Connected Biology

Connected Biology provides a sequence of lessons for high school biology that fosters integrated learning of genetics and evolution. This novel curriculum is aligned with Next Generation Science Standards (NGSS) performance expectations and supports students’ development of a model of the relationships between molecules, cells, organisms, and populations. The curriculum package includes online lessons, an interactive Teacher’s Edition, and a real-time Teacher Dashboard. Additional background materials and supplemental resources are also provided.

Author/Presenter

The Connected Biology Team

Year
2018
Short Description

Connected Biology provides a sequence of lessons for high school biology that fosters integrated learning of genetics and evolution. This novel curriculum is aligned with Next Generation Science Standards (NGSS) performance expectations and supports students’ development of a model of the relationships between molecules, cells, organisms, and populations. The curriculum package includes online lessons, an interactive Teacher’s Edition, and a real-time Teacher Dashboard. Additional background materials and supplemental resources are also provided.

CHANGE Curriculum

CHANGE provides a website, https://climatechange.usf.edu/ which includes nine units from a marine sciences course, complete with lesson plans involving inexpensive, easy to find materials, Powerpoints, downloadable files and an interactive web-based eBook with simulation-based games.

Author/Presenter

The CHANGE Team

Lead Organization(s)
Year
2018
Short Description

Nine units for high school-level Marine Science classes: (1) Ocean Exploration, (2) Marine Geology, (3) Marine Chemistry, (4) Estuaries, (5) Marine Physics, (6) Populations: Producers, (7) Populations: Invertebrates, (8) Populations: Vertebrates and (9) Capstone: Apollo Beach. All of these materials can be potentially repurposed for other high school science courses. The units include lesson plans involving inexpensive, easy to find materials, Powerpoints, downloadable files and an interactive web-based eBook with simulation-based games. Teachers can view the top level, outline of the CHANGE curriculum web-page: https://climatechange.usf.edu/. However, to access the actual materials, they will need to register to get a username, by emailing Dr. Glenn Smith: glenns@usf.edu and metinbesalti@mail.usf.edu

In the Classrooms of Newly Hired Secondary Science Teachers: The Consequences of Teaching In-field or Out-of-field

Science teachers must sometimes teach outside of their expertise, and this type of teaching assignment is referred to as being out-of-field. Among newly hired teachers, this type of assignment may have a detrimental impact in the development of their instruction. This study explored the classroom instruction of 17 newly hired teachers who were teaching both in-field and out-of-field in the physical sciences during their first three years.

Author/Presenter

Jessica B. Napier

Julie A. Luft

Harleen Singh

Lead Organization(s)
Year
2020
Short Description

Science teachers must sometimes teach outside of their expertise, and this type of teaching assignment is referred to as being out-of-field. Among newly hired teachers, this type of assignment may have a detrimental impact in the development of their instruction. This study explored the classroom instruction of 17 newly hired teachers who were teaching both in-field and out-of-field in the physical sciences during their first three years.

The Development of ePCK of Newly Hired In-field and Out-of-field Teachers during their First Three Years of Teaching

This study explored the potential impact of teaching outside of one’s field of expertise. This longitudinal cross-case study examined the development of enacted pedagogical content knowledge (ePCK) among a group of in-field and out-of-field (OOF) physical science teachers during their first 3 years of teaching. The components of ePCK investigated included the knowledge and skills related to conceptual teaching strategies and student understanding of science. Seventeen newly hired teachers teaching in and outside their field of expertise participated in the study.

Author/Presenter

Harleen Singh

Julie A. Luft

Jessica B. Napier

Lead Organization(s)
Year
2021
Short Description

This study explored the potential impact of teaching outside of one’s field of expertise. This longitudinal cross-case study examined the development of enacted pedagogical content knowledge (ePCK) among a group of in-field and out-of-field (OOF) physical science teachers during their first 3 years of teaching.

Theory to Practice: Prospective Mathematics Teachers’ Recontextualizing Discourses Surrounding Collective Argumentation

Teacher education programs have a critical role in supporting prospective teachers’ connections between theory and practice. In this study, we examined three prospective secondary mathematics teachers’ discourses regarding collective argumentation during and after a unit of instruction addressing collective argumentation and ways they recontextualized their on-campus coursework (theory) into their student teaching (practice) as demonstrated by their support for students’ mathematical arguments during student teaching.
Author/Presenter

Carlos Nicolas Gomez Marchant

Hyejin Park

Yuling Zhuang

Jonathan K. Foster

AnnaMarie Conner

Year
2021
Short Description

Teacher education programs have a critical role in supporting prospective teachers’ connections between theory and practice. In this study, authors examined three prospective secondary mathematics teachers’ discourses regarding collective argumentation during and after a unit of instruction addressing collective argumentation and ways they recontextualized their on-campus coursework (theory) into their student teaching (practice) as demonstrated by their support for students’ mathematical arguments during student teaching.

Negotiations in Scientific Argumentation: An Interpersonal Analysis

Argumentation enables students to engage in real world scientific practices by rationalizing claims grounded in supporting evidence. Student engagement in scientific argumentation activates the negotiation process by which students develop and defend evidence-based claims. Little is known, however, on the intricate process and potential patterns of negotiation between students during scientific argumentation.

Author/Presenter

Donna Governor

Doug Lombardi

Catie Duffield

Lead Organization(s)
Year
2021
Short Description

Argumentation enables students to engage in real world scientific practices by rationalizing claims grounded in supporting evidence. Student engagement in scientific argumentation activates the negotiation process by which students develop and defend evidence-based claims. Little is known, however, on the intricate process and potential patterns of negotiation between students during scientific argumentation. The present study seeks to fill this gap by exploring how a group of university science education students negotiated when evaluating the relationship between lines of evidence and alternative explanatory models of a phenomena (i.e., climate change).

Exploring Experienced Designers' Strategies in a CAD Learning Environment

Computer-aided design (CAD) simulation environments offer opportunities for students to evaluate, redesign, and visualize engineering design solutions quickly and get feedback. However, the use of CAD simulation tools in precollege settings is relatively rare. This study explores design strategies used by experienced designers in Energy3D, a CAD simulation environment designed for learning settings, to provide insight into supporting students' use of CAD simulation environments in precollege settings.
Author/Presenter

Anne M. McAlister

James P. Bywater

Jennifer L. Chiu

Lead Organization(s)
Year
2021
Short Description

This study explores design strategies used by experienced designers in Energy3D, a computer-aided design (CAD) simulation environment designed for learning settings, to provide insight into supporting students' use of CAD simulation environments in precollege settings.

Backward Transfer Influences from Quadratic Functions Instruction on Students’ Prior Ways of Covariational Reasoning about Linear Functions

The study reported in this article examined the ways in which new mathematics learning influences students’ prior ways of reasoning. We conceptualize this kind of influence as a form of transfer of learning called backward transfer. The focus of our study was on students’ covariational reasoning about linear functions before and after they participated in a multi-lesson instructional unit on quadratic functions. The subjects were 57 students from two authentic algebra classrooms at two local high schools.

Author/Presenter

Charles Hohensee

Sara Gartland

Laura Willoughby

Matthew Melville

Lead Organization(s)
Year
2021
Short Description

The study reported in this article examined the ways in which new mathematics learning influences students’ prior ways of reasoning. Authors conceptualize this kind of influence as a form of transfer of learning called backward transfer. The focus of the study was on students’ covariational reasoning about linear functions before and after they participated in a multi-lesson instructional unit on quadratic functions.

Competencies and Behaviors Observed When Students Solve Geometry Proof Problems: An Interview Study with Smartpen Technology

This peer-reviewed research journal publication addresses one of the grant goals with respect to how students performed on a set of proof tasks. Student work was documented through the use of smartpen technology which allowed the researchers to "track" students' written work on the proof tasks as well as hear the students' explanations of their thinking about the tasks. Although the two tasks highlighted in this paper were relatively routine triangle congruent proofs, only 7 out of 23 of the sampled students were successful on both proofs.

Author/Presenter

Michelle Cirillo

Jenifer Hummer

Lead Organization(s)
Year
2021
Short Description

This peer-reviewed research journal publication addresses one of the grant goals with respect to how students performed on a set of proof tasks.