High

Transforming Science Learning Framework: Translating an Equity Commitment into Action through Co-Design

In this study, we present a conceptual tool for guiding teachers’ principled pedagogical actions toward equitable instruction, referred to as the Transforming Science Learning (TSL) framework. The TSL framework was developed to address the challenges of enacting an ideological commitment in local contexts–promoting equity and justice through culturally relevant pedagogy (CRP) in K-12 science classrooms. TSL consists of five design principles that articulate the goals (the ‘why” of practice), instead of prescribing pedagogical activities (the “what” of practice).

Author/Presenter

Hosun Kang

Jasmine McBeath Nation

Year
2022
Short Description

In this study, we present a conceptual tool for guiding teachers’ principled pedagogical actions toward equitable instruction, referred to as the Transforming Science Learning (TSL) framework. The TSL framework was developed to address the challenges of enacting an ideological commitment in local contexts–promoting equity and justice through culturally relevant pedagogy (CRP) in K-12 science classrooms.

Sustaining at Scale: District Mathematics Specialists’ Adaptations to a Teacher Leadership Preparation Program

A common approach to scaling up a professional development program is for the researchers who designed the program to prepare teacher leaders to facilitate it at their schools. When researchers eventually leave, however, teacher leaders may receive less support. To ensure that teacher leaders continue receiving support, researchers can prepare district mathematics specialists to assume responsibility for preparing the teacher leaders. Little is known, however, about district mathematics specialists’ role in sustaining, and potentially adapting, professional development programs.

Author/Presenter

Michael Jarry-Shore

Victoria Delaney

Hilda Borko

Lead Organization(s)
Year
2022
Short Description

A common approach to scaling up a professional development program is for the researchers who designed the program to prepare teacher leaders to facilitate it at their schools. When researchers eventually leave, however, teacher leaders may receive less support. To ensure that teacher leaders continue receiving support, researchers can prepare district mathematics specialists to assume responsibility for preparing the teacher leaders. Little is known, however, about district mathematics specialists’ role in sustaining, and potentially adapting, professional development programs. We examined district mathematics specialists’ facilitation of an adaptive teacher leadership preparation program.

Building Toward Critical Data Literacy with Investigations of Income Inequality

To promote understanding of and interest in working with data among diverse student populations, we developed and studied a high school mathematics curriculum module that examines income inequality in the United States. Designed as a multi-week set of applied data investigations, the module supports student analyses of income inequality using U.S. Census Bureau microdata and the online data analysis tool the Common Online Data Analysis Platform (CODAP).

Author/Presenter

Josephine Louie

Jennifer Stiles

Emily Fagan

Beth Chance

Soma Roy

Year
2022
Short Description

To promote understanding of and interest in working with data among diverse student populations, we developed and studied a high school mathematics curriculum module that examines income inequality in the United States.

Students Do Not Always Mean What We Think They Mean: A Questioning Strategy to Elicit the Reasoning Behind Unexpected Causal Patterns in Student System Models

An ability to engage in system thinking is necessary to understand complex problems. While many pre-college students use system modeling tools, there is limited evidence of student reasoning about causal relationships that interact in diverging and converging chains, and how these affect system behavior. A chemistry unit on gas phenomena was implemented in two successive years with 73 high school students. Although the phenomena could be explained with simple linear causal reasoning, many student models included surprising and problematic causal chains and non-linear patterns.

Author/Presenter

Steven Roderick

Namsoo Shin

Daniel Damelin

Lead Organization(s)
Year
2022
Short Description

An ability to engage in system thinking is necessary to understand complex problems. While many pre-college students use system modeling tools, there is limited evidence of student reasoning about causal relationships that interact in diverging and converging chains, and how these affect system behavior. A chemistry unit on gas phenomena was implemented in two successive years with 73 high school students. Although the phenomena could be explained with simple linear causal reasoning, many student models included surprising and problematic causal chains and non-linear patterns.

Students Do Not Always Mean What We Think They Mean: A Questioning Strategy to Elicit the Reasoning Behind Unexpected Causal Patterns in Student System Models

An ability to engage in system thinking is necessary to understand complex problems. While many pre-college students use system modeling tools, there is limited evidence of student reasoning about causal relationships that interact in diverging and converging chains, and how these affect system behavior. A chemistry unit on gas phenomena was implemented in two successive years with 73 high school students. Although the phenomena could be explained with simple linear causal reasoning, many student models included surprising and problematic causal chains and non-linear patterns.

Author/Presenter

Steven Roderick

Namsoo Shin

Daniel Damelin

Lead Organization(s)
Year
2022
Short Description

An ability to engage in system thinking is necessary to understand complex problems. While many pre-college students use system modeling tools, there is limited evidence of student reasoning about causal relationships that interact in diverging and converging chains, and how these affect system behavior. A chemistry unit on gas phenomena was implemented in two successive years with 73 high school students. Although the phenomena could be explained with simple linear causal reasoning, many student models included surprising and problematic causal chains and non-linear patterns.

The Role of Inclusion, Discrimination, and Belonging for Adolescent Science, Technology, Engineering and Math Engagement In and Out of School

Women and ethnic minoritized individuals are underrepresented in science, technology, engineering, and mathematics (STEM) domains in postsecondary education and in the workforce. The aim of the current study was to examine whether adolescents' perceptions of inclusivity, belonging, and discrimination in high school STEM classes are related to their STEM class engagement in and outside of school.

Author/Presenter

Kelly Lynn Mulvey

Channing J. Mathews

Jerica Knox

Angelina Joy

Jacqueline Cerda-Smith

Year
2022
Short Description

Women and ethnic minoritized individuals are underrepresented in science, technology, engineering, and mathematics (STEM) domains in postsecondary education and in the workforce. The aim of the current study was to examine whether adolescents' perceptions of inclusivity, belonging, and discrimination in high school STEM classes are related to their STEM class engagement in and outside of school.

Methodological Advancements for Analyzing Teachers’ Learning in a Community of Practice

Professional development that privileges teachers’ voice, equity, and the investigation of high-quality instruction is essential to the mathematics education community. However, more research is needed to understand the process, content, and depth of teachers’ learning in this setting. This paper shares our analytic method designed to capture such learning. We integrate three complementary perspectives: Communities of Practice (theoretical framework), Teaching for Robust Understanding (conceptual framework), and Frame Analysis (analytical framework).

Author/Presenter

Helene Leonard

Victoria Bonaccorso

Joseph DiNapoli

Eileen Murray

Lead Organization(s)
Year
2021
Short Description

Professional development that privileges teachers’ voice, equity, and the investigation of high-quality instruction is essential to the mathematics education community. However, more research is needed to understand the process, content, and depth of teachers’ learning in this setting. This paper shares our analytic method designed to capture such learning. We integrate three complementary perspectives: Communities of Practice (theoretical framework), Teaching for Robust Understanding (conceptual framework), and Frame Analysis (analytical framework).

A Design-Based Process in Characterizing Experienced Teachers’ Formative Assessment Enactment in Science Classrooms

Formative assessment can facilitate teachers’ abilities to elicit and notice the disciplinary substance of students’ thinking and to respond based on this. Following a design-based process, we developed principled practical knowledge to create resources that might guide experienced teachers in examining their formative assessment practice and provide researchers with tools to study formative assessment enactment.

Author/Presenter

Hannah Sevian

Vesal Dini

Year
2019
Short Description

Formative assessment can facilitate teachers’ abilities to elicit and notice the disciplinary substance of students’ thinking and to respond based on this. Following a design-based process, we developed principled practical knowledge to create resources that might guide experienced teachers in examining their formative assessment practice and provide researchers with tools to study formative assessment enactment.

Conceptual Profile of Substance: Representing Heterogeneity of Thinking in Chemistry Classrooms

Teachers face challenges when building the concept of substance with students because tensions of meanings emerge from students’ daily life and canonical ideas developed in classrooms. A powerful tool to address learning, pedagogical, and research challenges is the conceptual profile theory. According to this theory, people employ various ways of conceptualizing the world to signify experiences. Conceptual profiles are models of the heterogeneity of modes of thinking and speaking about a given scientific concept which are used in a variety of contexts.

Author/Presenter

Hannah Sevian

Eduardo F. Mortimer 

Year
2020
Short Description

Teachers face challenges when building the concept of substance with students because tensions of meanings emerge from students’ daily life and canonical ideas developed in classrooms. A powerful tool to address learning, pedagogical, and research challenges is the conceptual profile theory. According to this theory, people employ various ways of conceptualizing the world to signify experiences. Conceptual profiles are models of the heterogeneity of modes of thinking and speaking about a given scientific concept which are used in a variety of contexts. To better understand the heterogeneity of thinking/speaking about substance, the present study aimed to answer: (1) What are the zones that constitute the conceptual profile of substance?; and (2) What ways of thinking and speaking about substance do teachers and students exhibit when engaged in a classroom formative assessment activity?

Exploring Variation in Ways of Thinking About and Acting to Control a Chemical Reaction

Chemical scientists and engineers are interested in controlling chemical processes to attain specific goals, from synthesizing a desired substance to hindering a particular transformation. Nevertheless, students typically have few opportunities to develop the understandings and practices that are required to effectively engage in chemical control. In this study, we investigated similarities and differences among individuals with different levels of expertise in chemistry in the ways they think about how to control and act to control a chemical reaction.

Author/Presenter

Klaudja Caushi

Hannah Sevian

Vicente Talanquer

Year
2021
Short Description

Chemical scientists and engineers are interested in controlling chemical processes to attain specific goals, from synthesizing a desired substance to hindering a particular transformation. Nevertheless, students typically have few opportunities to develop the understandings and practices that are required to effectively engage in chemical control. In this study, we investigated similarities and differences among individuals with different levels of expertise in chemistry in the ways they think about how to control and act to control a chemical reaction.