High

North Carolina Students Engage in Purpose-Driven Inquiry to Address Global Challenges

This week is Global Goals week — an annual week of action, awareness, and accountability for the United Nations’ Sustainable Development Goals, which are aimed at addressing global challenges like poverty and hunger. In North Carolina, two schools have integrated purpose-driven, interdisciplinary, and collaborative inquiry into their classrooms to empower students and teachers as local and global change agents during a particularly uncertain school year.

Author/Presenter
Marie Himes
Year
2021
Short Description

This week is Global Goals week — an annual week of action, awareness, and accountability for the United Nations’ Sustainable Development Goals, which are aimed at addressing global challenges like poverty and hunger. In North Carolina, two schools have integrated purpose-driven, interdisciplinary, and collaborative inquiry into their classrooms to empower students and teachers as local and global change agents during a particularly uncertain school year.

“We Are the Future”: Critical Inquiry and Social Action in the Classroom

This study explored how engaging in critical inquiry through Project-Based Inquiry (PBI) Global fostered social action with high school students. Drawing on theoretical perspectives from critical inquiry and social action and employing a collective case study approach, we focused on six diverse students from two of the 18 teams who participated in a PBI Global examining global water and sanitation over a two-month period. Data sources included semi-structured student interviews, students’ posts and uploads in a shared writing space, and students’ multimodal products of learning.

Author/Presenter

Hiller Spires

Marie Himes

Crystal Chen Lee

Andrea Gambino

Year
2021
Short Description

This study explored how engaging in critical inquiry through Project-Based Inquiry (PBI) Global fostered social action with high school students. Drawing on theoretical perspectives from critical inquiry and social action and employing a collective case study approach, we focused on six diverse students from two of the 18 teams who participated in a PBI Global examining global water and sanitation over a two-month period.

Training a New Generation of Problem Solvers: Innovation in STEM Education

Humankind faces unprecedented environmental, social, and economic challenges. There is a critical need for STEM education to foster both science learning and the application of learning to problem solving. At the University of Utah, Professor Nancy Butler Songer and her collaborators have developed a suite of interdisciplinary instructional and field-based data collection resources offering elementary and secondary students the chance to create solutions for local, urban environmental issues.

Author/Presenter

Nancy Butler Songer

Lead Organization(s)
Year
2021
Short Description

Humankind faces unprecedented environmental, social, and economic challenges. There is a critical need for STEM education to foster both science learning and the application of learning to problem solving. At the University of Utah, Professor Nancy Butler Songer and her collaborators have developed a suite of interdisciplinary instructional and field-based data collection resources offering elementary and secondary students the chance to create solutions for local, urban environmental issues.

Examining Temporal Dynamics of Self-Regulated Learning Behaviors in STEM Learning: A Network Approach

From a network perspective, self-regulated learning (SRL) can be conceptualized as networks of mutually interacting self-regulatory learning behaviors. Nevertheless, the research on how SRL behaviors dynamically interact over time in a network architecture is still in its infancy, especially in the context of STEM (sciences, technology, engineering, and math) learning.

Author/Presenter

Shan Li

Hanxiang Du

Wanli Xing

Juan Zheng

Guanhua Chen

Charles Xie

Year
2020
Short Description

From a network perspective, self-regulated learning (SRL) can be conceptualized as networks of mutually interacting self-regulatory learning behaviors. Nevertheless, the research on how SRL behaviors dynamically interact over time in a network architecture is still in its infancy, especially in the context of STEM (sciences, technology, engineering, and math) learning. In the present paper, we used a multilevel vector autoregression (VAR) model to examine the temporal dynamics of SRL behaviors as 101 students designed green buildings in Energy3D, a simulation-based computer-aided design (CAD) environment.

Classroom Orchestration of Computer Simulations for Science and Engineering Learning: A Multiple-Case Study Approach

This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.

Author/Presenter

Jennifer Chiu

Ying Ying Seah

James P. Bywater

Corey Schimpf

Tugba Karabiyik

Sanjay Rebello

Charles Xie

Short Description

This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.

Classroom Orchestration of Computer Simulations for Science and Engineering Learning: A Multiple-Case Study Approach

This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.

Author/Presenter

Jennifer Chiu

Ying Ying Seah

James P. Bywater

Corey Schimpf

Tugba Karabiyik

Sanjay Rebello

Charles Xie

Short Description

This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.

Classroom Orchestration of Computer Simulations for Science and Engineering Learning: A Multiple-Case Study Approach

This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.

Author/Presenter

Jennifer Chiu

Ying Ying Seah

James P. Bywater

Corey Schimpf

Tugba Karabiyik

Sanjay Rebello

Charles Xie

Short Description

This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.

Improving Integrated STEM Education: The Design and Development of a K-12 STEM Observation Protocol (STEM-OP) (RTP)

Integrated approaches to teaching science, technology, engineering, and mathematics (commonly referred to as STEM education) in K-12 classrooms have resulted in a growing number of teachers incorporating engineering in their science classrooms. Such changes are a result of shifts in science standards to include engineering as evidenced by the Next Generation Science Standards. To date, 20 states and the District of Columbia have adopted the NGSS and another 24 have adopted standards based on the Framework for K-12 Science Education.

Author/Presenter

Emily Anna Dare

Benny Mart Reblando Hiwatig

Khomson Keratithamkul

Joshua Alexander Ellis

Gillian Roehrig

Elizabeth A. Ring-Whalen

Mark Rouleau

Farah Faruqi

Corbin Rice

Preethi Titu

Feng Li

Jeanna R. Wieselmann

Elizabeth A Crotty

Year
2021
Short Description

The work presented here describes in detail the development of an integrated STEM observation instrument - the STEM Observation Protocol (STEM-OP) - that can be used for both research and practice. Over a period of approximately 18-months, a team of STEM educators and educational researchers developed a 10-item integrated STEM observation instrument for use in K-12 science and engineering classrooms. The process of developing the STEM-OP began with establishing a conceptual framework, drawing on the integrated STEM research literature, national standards documents, and frameworks for both K-12 engineering education and integrated STEM education.

Improving Integrated STEM Education: The Design and Development of a K-12 STEM Observation Protocol (STEM-OP) (RTP)

Integrated approaches to teaching science, technology, engineering, and mathematics (commonly referred to as STEM education) in K-12 classrooms have resulted in a growing number of teachers incorporating engineering in their science classrooms. Such changes are a result of shifts in science standards to include engineering as evidenced by the Next Generation Science Standards. To date, 20 states and the District of Columbia have adopted the NGSS and another 24 have adopted standards based on the Framework for K-12 Science Education.

Author/Presenter

Emily Anna Dare

Benny Mart Reblando Hiwatig

Khomson Keratithamkul

Joshua Alexander Ellis

Gillian Roehrig

Elizabeth A. Ring-Whalen

Mark Rouleau

Farah Faruqi

Corbin Rice

Preethi Titu

Feng Li

Jeanna R. Wieselmann

Elizabeth A Crotty

Year
2021
Short Description

The work presented here describes in detail the development of an integrated STEM observation instrument - the STEM Observation Protocol (STEM-OP) - that can be used for both research and practice. Over a period of approximately 18-months, a team of STEM educators and educational researchers developed a 10-item integrated STEM observation instrument for use in K-12 science and engineering classrooms. The process of developing the STEM-OP began with establishing a conceptual framework, drawing on the integrated STEM research literature, national standards documents, and frameworks for both K-12 engineering education and integrated STEM education.

Improving Integrated STEM Education: The Design and Development of a K-12 STEM Observation Protocol (STEM-OP) (RTP)

Integrated approaches to teaching science, technology, engineering, and mathematics (commonly referred to as STEM education) in K-12 classrooms have resulted in a growing number of teachers incorporating engineering in their science classrooms. Such changes are a result of shifts in science standards to include engineering as evidenced by the Next Generation Science Standards. To date, 20 states and the District of Columbia have adopted the NGSS and another 24 have adopted standards based on the Framework for K-12 Science Education.

Author/Presenter

Emily Anna Dare

Benny Mart Reblando Hiwatig

Khomson Keratithamkul

Joshua Alexander Ellis

Gillian Roehrig

Elizabeth A. Ring-Whalen

Mark Rouleau

Farah Faruqi

Corbin Rice

Preethi Titu

Feng Li

Jeanna R. Wieselmann

Elizabeth A Crotty

Year
2021
Short Description

The work presented here describes in detail the development of an integrated STEM observation instrument - the STEM Observation Protocol (STEM-OP) - that can be used for both research and practice. Over a period of approximately 18-months, a team of STEM educators and educational researchers developed a 10-item integrated STEM observation instrument for use in K-12 science and engineering classrooms. The process of developing the STEM-OP began with establishing a conceptual framework, drawing on the integrated STEM research literature, national standards documents, and frameworks for both K-12 engineering education and integrated STEM education.