Educational Technology

Using Machine Learning to Predict Engineering Technology Students’ Success with Computer-Aided Design

Computer-aided design (CAD) programs are essential to engineering as they allow for better designs through low-cost iterations. While CAD programs are typically taught to undergraduate students as a job skill, such software can also help students learn engineering concepts. A current limitation of CAD programs (even those that are specifically designed for educational purposes) is that they are not capable of providing automated real-time help to students.

Author/Presenter

Jasmine Singh

Viranga Perera

Alejandra J. Magana

Brittany Newell

Jin Wei-Kocsis

Ying Ying Seah

Greg J. Strimel

Charles Xie

Year
2022
Short Description

Computer-aided design (CAD) programs are essential to engineering as they allow for better designs through low-cost iterations. While CAD programs are typically taught to undergraduate students as a job skill, such software can also help students learn engineering concepts. A current limitation of CAD programs (even those that are specifically designed for educational purposes) is that they are not capable of providing automated real-time help to students. To encourage CAD programs to build in assistance to students, we used data generated from students using a free, open-source CAD software called Aladdin to demonstrate how student data combined with machine learning techniques can predict how well a particular student will perform in a design task.

Using Machine Learning to Predict Engineering Technology Students’ Success with Computer-Aided Design

Computer-aided design (CAD) programs are essential to engineering as they allow for better designs through low-cost iterations. While CAD programs are typically taught to undergraduate students as a job skill, such software can also help students learn engineering concepts. A current limitation of CAD programs (even those that are specifically designed for educational purposes) is that they are not capable of providing automated real-time help to students.

Author/Presenter

Jasmine Singh

Viranga Perera

Alejandra J. Magana

Brittany Newell

Jin Wei-Kocsis

Ying Ying Seah

Greg J. Strimel

Charles Xie

Year
2022
Short Description

Computer-aided design (CAD) programs are essential to engineering as they allow for better designs through low-cost iterations. While CAD programs are typically taught to undergraduate students as a job skill, such software can also help students learn engineering concepts. A current limitation of CAD programs (even those that are specifically designed for educational purposes) is that they are not capable of providing automated real-time help to students. To encourage CAD programs to build in assistance to students, we used data generated from students using a free, open-source CAD software called Aladdin to demonstrate how student data combined with machine learning techniques can predict how well a particular student will perform in a design task.

Using Machine Learning to Predict Engineering Technology Students’ Success with Computer-Aided Design

Computer-aided design (CAD) programs are essential to engineering as they allow for better designs through low-cost iterations. While CAD programs are typically taught to undergraduate students as a job skill, such software can also help students learn engineering concepts. A current limitation of CAD programs (even those that are specifically designed for educational purposes) is that they are not capable of providing automated real-time help to students.

Author/Presenter

Jasmine Singh

Viranga Perera

Alejandra J. Magana

Brittany Newell

Jin Wei-Kocsis

Ying Ying Seah

Greg J. Strimel

Charles Xie

Year
2022
Short Description

Computer-aided design (CAD) programs are essential to engineering as they allow for better designs through low-cost iterations. While CAD programs are typically taught to undergraduate students as a job skill, such software can also help students learn engineering concepts. A current limitation of CAD programs (even those that are specifically designed for educational purposes) is that they are not capable of providing automated real-time help to students. To encourage CAD programs to build in assistance to students, we used data generated from students using a free, open-source CAD software called Aladdin to demonstrate how student data combined with machine learning techniques can predict how well a particular student will perform in a design task.

PST Learning to Facilitate Argumentation Via Simulation: Exploring the Role of Understanding and Emotion

The present study focuses on examining transitions in elementary pre-service teachers (PSTs)’ understanding of, and skills in, leading argumentation-focused discussions in mathematics during participation in a sequence of three different practice-based activities, collectively referred to as the Online Practice Suite (OPS). We will examine 14 PSTs’ responses to post-activity surveys targeting their understanding of argumentation-focused discussions and emotional experiences, over the course of a single semester.

Author/Presenter

Heather Howell

Dionne Cross Francis

Pavneet Kaur Bharaj

Calli Shekell

Lead Organization(s)
Year
2021
Short Description

The present study focuses on examining transitions in elementary pre-service teachers (PSTs)’ understanding of, and skills in, leading argumentation-focused discussions in mathematics during participation in a sequence of three different practice-based activities, collectively referred to as the Online Practice Suite (OPS).

Pushing the Boundaries: Exploring the Potential of an Online Practice Suite to Support Elementary ScieTeachers in Learning How to Engage Students in Argumentation

Slides from a pre-conference workshop at the 2021 National Association for Research in Science Teaching Annual Meeting, Orlando, FL.

Author/Presenter

Jamie N. Mikeska

Pamela S. Lottero-Perdue

Meredith Park Rogers

Meredith Thompson

Dionne Cross Francis

Calli Shekell

Lead Organization(s)
Year
2021
Short Description

Slides from a pre-conference workshop at the 2021 National Association for Research in Science Teaching Annual Meeting, Orlando, FL.

Using Online Simulations to Promote Elementary Preservice Teachers’ Facilitation of Argumentation-Focused Discussions in Mathematics and Science

In this study, our team developed and is studying the use of an Online Practice Suite (OPS) composed of a coordinated and scaffolded collection of three practice-based online simulations designed to support the development of preservice teachers' (PSTs’) abilities, skills, beliefs, and understanding around one ambitious teaching practice within mathematics and science: facilitating discussions that engage students in argumentation.

Author/Presenter

Jamie N. Mikeska

Dionne Cross Francis

Pamela Lottero-Perdue

Meredith Park Rogers

Calli Shekell

Pavneet Bharaj

Heather Howell

Adam Maltese

Meredith Thompson

Justin Reich

Lead Organization(s)
Year
2021
Short Description

In this study, our team developed and is studying the use of an Online Practice Suite (OPS) composed of a coordinated and scaffolded collection of three practice-based online simulations designed to support the development of preservice teachers' (PSTs’) abilities, skills, beliefs, and understanding around one ambitious teaching practice within mathematics and science: facilitating discussions that engage students in argumentation.

Standards-Aligned Instructional Supports to Promote Computer Science Teachers' Pedagogical Content Knowledge

The rapid expansion of K-12 CS education has made it critical to support CS teachers, many of whom are new to teaching CS, with the necessary resources and training to strengthen their understanding of CS concepts and how to effectively teach CS. CS teachers are often tasked with teaching different curricula using different programming languages in different grades or during different school years, and tend to receive different professional development (PD) for each curriculum they are required to teach.

Author/Presenter

Satabdi Basu

Daisy Rutstein

Carol Tate

Arif Rachmatullah

Hui Yang

Lead Organization(s)
Year
2022
Short Description

This position paper advocates supporting computer science (CS) teacher professional learning by supplementing existing curriculum-specific teacher professional development (PD) with standards-aligned PD that focuses on teachers' conceptual understanding of CS standards and ability to adapt instruction based on student understanding of concepts underlying the CS standards. We share concrete examples of how to design standards-aligned educative resources and instructionally supportive tools that promote teachers' understanding of CS standards and common student challenges and develop teachers' formative assessment literacy, all essential components of CS pedagogical content knowledge.

Narrative-Supported Math Problem Solving in Digital Game-based Learning

Narrative as a game design feature constantly yields mixed results for learning in the literature. The purpose of this exploratory mixed-methods case study was to examine design heuristics and implications governing the role of narratives in a digital game-based learning (DGBL) environment for math problem solving. We collected data via observation, semi-structured interviewing, and video recording with twenty-seven college students with diverse demographic backgrounds. Video logging resulted in 2276 behavioral events for quantitative analysis.

Author/Presenter

Chih-Pu Dai

Fengfeng Ke

Yanjun Pan

Lead Organization(s)
Year
2022
Short Description

Narrative as a game design feature constantly yields mixed results for learning in the literature. The purpose of this exploratory mixed-methods case study was to examine design heuristics and implications governing the role of narratives in a digital game-based learning (DGBL) environment for math problem solving.

The Spectrum Laboratory: Towards Authentic Inquiry for All

Principal Investigator:

The Spectrum Laboratory is an online data visualization tool and associated set of investigations that supports students in learning about light, color, and the electromagnetic spectrum by working with authentic scientific spectral data. The research study investigates factors that hinder or promote students' reasoning about spectra; and to determine how the curriculum can help students to use spectra to explore interesting questions about the world while gaining fluency with a range of important science practices.

Click image to preview:
Target Audience:

Sensing Science through Modeling: Developing Kindergarten Students' Understanding of Matter and Its Changes

Principal Investigator:

The Sensing Science through Modeling Matter: Kindergarten Students’ Development of Understanding of Matter and Its Changes project has developed and researched a technology-enriched curriculum to support learning about matter and its changes at the kindergarten level. Traditionally, particle-based worlds are introduced in upper elementary school when children already hold incorrect ideas that are difficult to change. Early learners have significant—and highly untapped—potential for understanding abstract concepts and reasoning in sophisticated ways.

Click image to preview:
Target Audience: