Educational Technology

Using the COVID-19 Pandemic to Create a Vision for XR-based Teacher Education Field Experiences

If there was a bright side to the COVID-19 pandemic, particularly related to education, it was the massive and rapid introduction of educational technologies to scaffold teaching and learning. Most notably, within teacher education, this included extended reality (XR) technologies to supplement or replace face-to-face field experiences. With the pandemic turning endemic, and with preK-12 schools returning to traditional modalities, there is a danger that the successes of virtual field experiences may be lost.

Author/Presenter

Richard E. Ferdig

Karl W. Kosko

Enrico Gandolfi

Lead Organization(s)
Year
2022
Short Description

This article presents a vision for 2025 to implement low cost and effective extended reality (XR) technologies to supplement teacher education field experiences, regardless of if and when another global or local crisis occurs (e.g., pandemic, war, weather). In doing so, empirical and theoretical research is presented that argues for teacher educators to seek out and employ more immersive representations of practice that take advantage of the perceptual capacity of XR.

Examining How Using Dichotomous and Partial Credit Scoring Models Influence Sixth-Grade Mathematical Problem-Solving Assessment Outcomes

Determining the most appropriate method of scoring an assessment is based on multiple factors, including the intended use of results, the assessment's purpose, and time constraints. Both the dichotomous and partial credit models have their advantages, yet direct comparisons of assessment outcomes from each method are not typical with constructed response items. The present study compared the impact of both scoring methods on the internal structure and consequential validity of a middle-grades problem-solving assessment called the problem solving measure for grade six (PSM6).

Author/Presenter

Toni A. May

Kristin L. K. Koskey

Jonathan D. Bostic

Gregory E. Stone

Lance M. Kruse

Gabriel Matney

Year
2023
Short Description

Determining the most appropriate method of scoring an assessment is based on multiple factors, including the intended use of results, the assessment's purpose, and time constraints. Both the dichotomous and partial credit models have their advantages, yet direct comparisons of assessment outcomes from each method are not typical with constructed response items. The present study compared the impact of both scoring methods on the internal structure and consequential validity of a middle-grades problem-solving assessment called the problem solving measure for grade six (PSM6).

Examining How Using Dichotomous and Partial Credit Scoring Models Influence Sixth-Grade Mathematical Problem-Solving Assessment Outcomes

Determining the most appropriate method of scoring an assessment is based on multiple factors, including the intended use of results, the assessment's purpose, and time constraints. Both the dichotomous and partial credit models have their advantages, yet direct comparisons of assessment outcomes from each method are not typical with constructed response items. The present study compared the impact of both scoring methods on the internal structure and consequential validity of a middle-grades problem-solving assessment called the problem solving measure for grade six (PSM6).

Author/Presenter

Toni A. May

Kristin L. K. Koskey

Jonathan D. Bostic

Gregory E. Stone

Lance M. Kruse

Gabriel Matney

Year
2023
Short Description

Determining the most appropriate method of scoring an assessment is based on multiple factors, including the intended use of results, the assessment's purpose, and time constraints. Both the dichotomous and partial credit models have their advantages, yet direct comparisons of assessment outcomes from each method are not typical with constructed response items. The present study compared the impact of both scoring methods on the internal structure and consequential validity of a middle-grades problem-solving assessment called the problem solving measure for grade six (PSM6).

Examining How Using Dichotomous and Partial Credit Scoring Models Influence Sixth-Grade Mathematical Problem-Solving Assessment Outcomes

Determining the most appropriate method of scoring an assessment is based on multiple factors, including the intended use of results, the assessment's purpose, and time constraints. Both the dichotomous and partial credit models have their advantages, yet direct comparisons of assessment outcomes from each method are not typical with constructed response items. The present study compared the impact of both scoring methods on the internal structure and consequential validity of a middle-grades problem-solving assessment called the problem solving measure for grade six (PSM6).

Author/Presenter

Toni A. May

Kristin L. K. Koskey

Jonathan D. Bostic

Gregory E. Stone

Lance M. Kruse

Gabriel Matney

Year
2023
Short Description

Determining the most appropriate method of scoring an assessment is based on multiple factors, including the intended use of results, the assessment's purpose, and time constraints. Both the dichotomous and partial credit models have their advantages, yet direct comparisons of assessment outcomes from each method are not typical with constructed response items. The present study compared the impact of both scoring methods on the internal structure and consequential validity of a middle-grades problem-solving assessment called the problem solving measure for grade six (PSM6).

Examining How Using Dichotomous and Partial Credit Scoring Models Influence Sixth-Grade Mathematical Problem-Solving Assessment Outcomes

Determining the most appropriate method of scoring an assessment is based on multiple factors, including the intended use of results, the assessment's purpose, and time constraints. Both the dichotomous and partial credit models have their advantages, yet direct comparisons of assessment outcomes from each method are not typical with constructed response items. The present study compared the impact of both scoring methods on the internal structure and consequential validity of a middle-grades problem-solving assessment called the problem solving measure for grade six (PSM6).

Author/Presenter

Toni A. May

Kristin L. K. Koskey

Jonathan D. Bostic

Gregory E. Stone

Lance M. Kruse

Gabriel Matney

Year
2023
Short Description

Determining the most appropriate method of scoring an assessment is based on multiple factors, including the intended use of results, the assessment's purpose, and time constraints. Both the dichotomous and partial credit models have their advantages, yet direct comparisons of assessment outcomes from each method are not typical with constructed response items. The present study compared the impact of both scoring methods on the internal structure and consequential validity of a middle-grades problem-solving assessment called the problem solving measure for grade six (PSM6).

Accessible Physics for All

This article describes the experience of using the InquirySpace software in a classroom that practices full inclusion for ninth grade physics.

Haavind S. & Murtha, M. (2020). Accessible physics for all. The Science Teacher. 54-58.

Author/Presenter

Sarah Haavind

Michelle Murtha

Lead Organization(s)
Year
2020
Short Description

This article describes the experience of using the InquirySpace software in a classroom that practices full inclusion for ninth grade physics.

Innovator Interview: Steve Roderick

The Concord Consortium. (2021). Innovator Interview: Steve Roderick. @Concord, 25(1), 15.

Author/Presenter

The Concord Consortium

Lead Organization(s)
Year
2021
Short Description

Interview with Steve Roderick about helping teachers on the InquirySpace project bring more authentic science experiences to their classes.

Making Sense of Sensemaking: Understanding How K–12 Teachers and Coaches React to Visual Analytics

With the spread of learning analytics (LA) dashboards in K-12 schools, educators are increasingly expected to make sense of data to inform instruction. However, numerous features of school settings, such as specialized vantage points of educators, may lead to different ways of looking at data. This observation motivates the need to carefully observe and account for the ways data sensemaking occurs, and how it may differ across K-12 professional roles.

Author/Presenter

Fabio C. Campos

June Ahn

Daniela K. DiGiacomo

Ha Nguyen

Maria Hays

Year
2021
Short Description

With the spread of learning analytics (LA) dashboards in K-12 schools, educators are increasingly expected to make sense of data to inform instruction. However, numerous features of school settings, such as specialized vantage points of educators, may lead to different ways of looking at data. This observation motivates the need to carefully observe and account for the ways data sensemaking occurs, and how it may differ across K-12 professional roles. Our mixed-methods study reports on interviews and think-aloud sessions with middle-school mathematics teachers and instructional coaches from four districts in the United States.

Longitudinal Clustering of Students’ Self-Regulated Learning Behaviors in Engineering Design

It is vital to develop an understanding of students' self-regulatory processes in the domains of STEM (Science, Technology, Engineering, and Mathematics) for the quality delivery of STEM education. However, most studies have followed a variable-centered approach, leaving open the question of how specific SRL (Self-regulated Learning) behaviors group within individual learners. Furthermore, little is known about how students' SRL profiles unfold over time in STEM education, specifically in the context of engineering design.

Author/Presenter

Shan Li

Guanhua Chen

Wanli Xing

Juan Zheng

Charles Xie

Year
2020
Short Description

It is vital to develop an understanding of students' self-regulatory processes in the domains of STEM (Science, Technology, Engineering, and Mathematics) for the quality delivery of STEM education. However, most studies have followed a variable-centered approach, leaving open the question of how specific SRL (Self-regulated Learning) behaviors group within individual learners. Furthermore, little is known about how students' SRL profiles unfold over time in STEM education, specifically in the context of engineering design. In this study, we examined the change of students’ SRL profiles over time as 108 middle school students designed green buildings in a simulation-based computer-aided design (CAD) environment

Examining Temporal Dynamics of Self-Regulated Learning Behaviors in STEM Learning: A Network Approach

From a network perspective, self-regulated learning (SRL) can be conceptualized as networks of mutually interacting self-regulatory learning behaviors. Nevertheless, the research on how SRL behaviors dynamically interact over time in a network architecture is still in its infancy, especially in the context of STEM (sciences, technology, engineering, and math) learning.

Author/Presenter

Shan Li

Hanxiang Du

Wanli Xing

Juan Zheng

Guanhua Chen

Charles Xie

Year
2020
Short Description

From a network perspective, self-regulated learning (SRL) can be conceptualized as networks of mutually interacting self-regulatory learning behaviors. Nevertheless, the research on how SRL behaviors dynamically interact over time in a network architecture is still in its infancy, especially in the context of STEM (sciences, technology, engineering, and math) learning. In the present paper, we used a multilevel vector autoregression (VAR) model to examine the temporal dynamics of SRL behaviors as 101 students designed green buildings in Energy3D, a simulation-based computer-aided design (CAD) environment.