Classroom Practice

Secondary Mathematics Teachers’ Use of Students’ Incorrect Answers in Supporting Collective Argumentation

This study illustrates how two secondary mathematics teachers used students’ incorrect answers as they supported students’ engagement in collective argumentation. Three ways of supporting argumentation when students contributed incorrect answers are exemplified, and the structures of these arguments are investigated. Then, by focusing on the correctness of argument components as represented by the diagrams, we developed a potential model of levels of validity in classroom-based argumentation.

Author/Presenter

Yuling Zhuang

AnnaMarie Conner

Year
2022
Short Description

This study illustrates how two secondary mathematics teachers used students’ incorrect answers as they supported students’ engagement in collective argumentation.

“Science Theatre Makes You Good at Science”: Affordances of Embodied Performances in Urban Elementary Science Classrooms

School science continues to alienate students identifying with nondominant, non-western cultures, and learners of color, and considers science as an enterprise where success necessitates divorcing the self and corporeal body from ideas and the mind. Resisting the colonizing pedagogy of the mind–body divide, we aimed at creating pedagogical spaces and places in science classes that sustain equitable opportunities for engagement and meaning making where body and mind are enmeshed.

Author/Presenter

Maria Varelas

Rebecca T. Kotler

Hannah D. Natividad

Nathan C. Phillips

Rachelle P. Tsachor

Rebecca Woodard

Marcie Gutierrez

Miguel A. Melchor

Maria Rosario

Year
2021
Short Description

School science continues to alienate students identifying with nondominant, non-western cultures, and learners of color, and considers science as an enterprise where success necessitates divorcing the self and corporeal body from ideas and the mind. Resisting the colonizing pedagogy of the mind–body divide, we aimed at creating pedagogical spaces and places in science classes that sustain equitable opportunities for engagement and meaning making where body and mind are enmeshed. In the context of a partnership between school- and university-based educators and researchers, we explored how multimodal literacies cultivated through the performing arts, provide students from minoritized communities opportunities to both create knowledge and to position themselves as science experts and brilliant and creative meaning makers.

Conceptions and Consequences of Mathematical Argumentation, Justification, and Proof

This book aims to advance ongoing debates in the field of mathematics and mathematics education regarding conceptions of argumentation, justification, and proof and the consequences for research and practice when applying particular conceptions of each construct. Through analyses of classroom practice across grade levels using different lenses - particular conceptions of argumentation, justification, and proof - researchers consider the implications of how each conception shapes empirical outcomes.

Author/Presenter

Kristen N. Bieda,
AnnaMarie Conner,
Karl W. Kosko,
Megan Staples

AnnaMarie Conner

Karl W. Kosko

Megan Staples

Lead Organization(s)
Year
2020
Short Description

This book aims to advance ongoing debates in the field of mathematics and mathematics education regarding conceptions of argumentation, justification, and proof and the consequences for research and practice when applying particular conceptions of each construct. Through analyses of classroom practice across grade levels using different lenses - particular conceptions of argumentation, justification, and proof - researchers consider the implications of how each conception shapes empirical outcomes. In each section, organized by grade band, authors adopt particular conceptions of argumentation, justification, and proof, and they analyse one data set from each perspective. In addition, each section includes a synthesis chapter from an expert in the field to bring to the fore potential implications, as well as new questions, raised by the analyses. Finally, a culminating section considers the use of each conception across grade bands and data sets.

Domain appropriateness and skepticism in viable argumentation

Lead Organization(s)
Year
2020
Short Description

Several recent studies have focused on helping students understand the limitations of empirical arguments (e.g., Stylianides, G. J. & Stylianides, A. J., 2009, Brown, 2014). One view is that students use empirical argumentation because they hold empirical proof schemes—they are convinced a general claim is true by checking a few cases (Harel & Sowder, 1998). Some researchers have sought to unseat students’ empirical proof schemes by developing students’ skepticism, their uncertainty about the truth of a general claim in the face of confirming (but not exhaustive) evidence (e.g., Brown, 2014; Stylianides, G. J. & Stylianides, A. J., 2009). With sufficient skepticism, students would seek more secure, non-empirical arguments to convince themselves that a general claim is true. We take a different perspective, seeking to develop students’ awareness of domain appropriateness (DA), whether the argument type is appropriate to the domain of the claim. In particular, DA entails understanding that an empirical check of a proper subset of cases in a claim’s domain does not (i) guarantee the claim is true and does not (ii) provide an argument that is acceptable in the mathematical or classroom community, although checking all cases does both (i) and (ii). DA is distinct from skepticism; it is not concerned with students’ confidence about the truth of a general claim. We studied how ten 8th graders developed DA through classroom experiences that were part of a broader project focused on developing viable argumentation. 

Eliminating counterexamples: A case study intervention for improving adolescents’ ability to critique direct arguments

Students’ difficulties with argumentation, proving, and the role of counterexamples in proving are well documented. Students in this study experienced an intervention for improving their argumentation and proving practices. The intervention included the eliminating counterexamples (ECE) framework as a means of constructing and critiquing viable arguments for a general claim. This framework involves constructing descriptions of all possible counterexamples to a conditional claim and determining whether or not a direct argument eliminates the possibility of counterexamples.

Author/Presenter

Carolyn Maher

Year
2020
Short Description

Students’ difficulties with argumentation, proving, and the role of counterexamples in proving are well documented. Students in this study experienced an intervention for improving their argumentation and proving practices. The intervention included the eliminating counterexamples (ECE) framework as a means of constructing and critiquing viable arguments for a general claim. This framework involves constructing descriptions of all possible counterexamples to a conditional claim and determining whether or not a direct argument eliminates the possibility of counterexamples. This case study investigates U.S. eighth-grade (age 13) mathematics students’ conceptions about the validity of a direct argument after the students received instruction on the ECE framework. We describe student activities in response to the intervention, and we identify students’ conceptions that are inconsistent with canonical notions of mathematical proving and appear to be barriers to using the ECE framework.

Eliminating counterexamples: An intervention for improving adolescents’ contrapositive reasoning

Students’ difficulties with contrapositive reasoning are well documented. Lack of intuition about contrapositive reasoning and lack of a meta-argument for the logical equivalence between a conditional claim and its contrapositive may contribute to students’ struggles. This case study investigated the effectiveness of the eliminating counterexamples intervention in improving students’ ability to construct, critique, and validate contrapositive arguments in a U.S. eighth-grade mathematics classroom.

Author/Presenter

David Yopp

Lead Organization(s)
Year
2020
Short Description

Students’ difficulties with contrapositive reasoning are well documented. Lack of intuition about contrapositive reasoning and lack of a meta-argument for the logical equivalence between a conditional claim and its contrapositive may contribute to students’ struggles. This case study investigated the effectiveness of the eliminating counterexamples intervention in improving students’ ability to construct, critique, and validate contrapositive arguments in a U.S. eighth-grade mathematics classroom. The intervention involved constructing descriptions of all possible counterexamples to a conditional claim and its contrapositive, comparing the two descriptions, noting that the descriptions are the same barring the order of phrases, and finding a counterexample to show the claim is false or viably arguing that no counterexample exists.

Resource(s)

NCTM Presentation Line of "Good" Fit in Grade 8 Classrooms

Lead Organization(s)
Year
2018
Short Description

This presntation addreses 4 research cquestions

 

What extant criteria do Grade 8 students use to choose the better line
of fit between two lines “fit” to a set of data, when both lines express
the trend of the data?
 
Is a residual criterion accessible and useful to Grade 8 students when
learning about line of fit?
 
How does introducing a residual criterion impact student
understanding of line of fit and their understanding mathematical
modeling process?
 
What stages of learning do students express as they engage in our
lesson?

“Well That's How the Kids Feel!”—Epistemic Empathy as a Driver of Responsive Teaching

While research shows that responsive teaching fosters students' disciplinary learning and equitable opportunities for participation, there is yet much to know about how teachers come to be responsive to their students' experiences in the science classroom. In this work, we set out to examine whether and how engaging teachers as learners in doing science may support responsive instructional practices.

Author/Presenter

Lama Z. Jaber

Vesal Dini

David Hammer

Lead Organization(s)
Year
2021
Short Description

In this article, the authors present evidence from teachers' reflections that this stability was supported by the teachers' intellectual and emotional experiences as learners. Specifically, they argue that engaging in extended scientific inquiry provided a basis for the teachers having epistemic empathy for their students—their tuning into and appreciating their students' intellectual and emotional experiences in science, which in turn supported teachers' responsiveness in the classroom.

Young Mathematicians: Expanding an Innovative and Promising Model Across Learning Environments to Promote Preschoolers' Mathematics Knowledge

Principal Investigator:

Young Mathematicians (YM) is a design and development project that aims to broaden participation by addressing the need to provide young children with early mathematics experiences. In the coming year, we will test an intervention, developed in collaboration with teachers and families, that provides learning experiences and materials for teachers and families to support adult-child interaction and engagement in mathematics, promote school-home connections in mathematics, and address adult attitudes toward mathematics, while promoting childrens mathematical knowledge.

Click image to preview:
Target Audience:

Translating a Video-based Model of Teacher Professional Development to an Online Environment

Principal Investigator:

In prior work, BSCS studied STeLLA, a video-based analysis-of-practice professional learning (PL) model and found that it enhanced elementary science teacher and student outcomes. But the face-to-face model is difficult to scale. We present the results of a two-year design-based research study to translate the face-to-face PL into a facilitated online experience. The purpose is to create an effective, flexible, and cost-efficient PL model that will reach a broader audience of teachers.

Co-PI(s): Gillian Roehrig, University of Minnesota

Click image to preview:
Target Audience: