Middle

Co-Designing for Privacy, Transparency, and Trust in K-12 Learning Analytics

The process of using Learning Analytics (LA) to improve teaching works from the assumption that data should be readily shared between stakeholders in an educational organization. However, the design of LA tools often does not account for considerations such as data privacy, transparency and trust among stakeholders. Research in human-centered design of LA does attend to these questions, specifically with a focus on including direct input from K-12 educators.

Author/Presenter

June Ahn

Fabio Campos

Ha Nguyen

Maria Hays

Jan Morrison

Year
2021
Short Description

The process of using Learning Analytics (LA) to improve teaching works from the assumption that data should be readily shared between stakeholders in an educational organization. However, the design of LA tools often does not account for considerations such as data privacy, transparency and trust among stakeholders. Research in human-centered design of LA does attend to these questions, specifically with a focus on including direct input from K-12 educators. In this paper, we present a series of design studies to articulate and refine conjectures about how privacy and transparency might influence better trust-building and data sharing within four school districts in the United States.

When Should I Use a Measure to Support InstructionalImprovement at Scale? The Importance of Considering BothIntended and Actual Use in Validity Arguments

Despite the ease of accessing a wide range of measures, little attention is given to validity arguments when considering whether to use the measure for a new purpose or in a different context. Making a validity argument has historically focused on the intended interpretation and use.

Author/Presenter

Marsha Ing

Starlie Chinen

Kara Jackson

Thomas M. Smith

Year
2021
Short Description

Despite the ease of accessing a wide range of measures, little attention is given to validity arguments when considering whether to use the measure for a new purpose or in a different context. Making a validity argument has historically focused on the intended interpretation and use. There has been a press to consider both the intended and actual interpretations and how users make sense of the data when constructing validity arguments, but the practice is not widespread.This paper contributes to existing research on validity by highlighting the value of attending to the actual interpretation and use of a measure aimed at supporting instructional improvement in mathematics.

Making Sense of Sensemaking: Understanding How K–12 Teachers and Coaches React to Visual Analytics

With the spread of learning analytics (LA) dashboards in K-12 schools, educators are increasingly expected to make sense of data to inform instruction. However, numerous features of school settings, such as specialized vantage points of educators, may lead to different ways of looking at data. This observation motivates the need to carefully observe and account for the ways data sensemaking occurs, and how it may differ across K-12 professional roles.

Author/Presenter

Fabio C. Campos

June Ahn

Daniela K. DiGiacomo

Ha Nguyen

Maria Hays

Year
2021
Short Description

With the spread of learning analytics (LA) dashboards in K-12 schools, educators are increasingly expected to make sense of data to inform instruction. However, numerous features of school settings, such as specialized vantage points of educators, may lead to different ways of looking at data. This observation motivates the need to carefully observe and account for the ways data sensemaking occurs, and how it may differ across K-12 professional roles. Our mixed-methods study reports on interviews and think-aloud sessions with middle-school mathematics teachers and instructional coaches from four districts in the United States.

Training a New Generation of Problem Solvers: Innovation in STEM Education

Humankind faces unprecedented environmental, social, and economic challenges. There is a critical need for STEM education to foster both science learning and the application of learning to problem solving. At the University of Utah, Professor Nancy Butler Songer and her collaborators have developed a suite of interdisciplinary instructional and field-based data collection resources offering elementary and secondary students the chance to create solutions for local, urban environmental issues.

Author/Presenter

Nancy Butler Songer

Lead Organization(s)
Year
2021
Short Description

Humankind faces unprecedented environmental, social, and economic challenges. There is a critical need for STEM education to foster both science learning and the application of learning to problem solving. At the University of Utah, Professor Nancy Butler Songer and her collaborators have developed a suite of interdisciplinary instructional and field-based data collection resources offering elementary and secondary students the chance to create solutions for local, urban environmental issues.

Training a New Generation of Problem Solvers: How Can Education Programs Develop the Problem-Solving Skills of Today's Schoolchildren and Tomorrow's STEM Workforce?

Songer, N.B. (2022 April) Training a new generation of problem solvers: How can education programs develop the problem-solving skills of today's schoolchildren and tomorrow's STEM workforce? Open Access Government.

Author/Presenter

Nancy Butler Songer

Lead Organization(s)
Year
2022
Short Description

This article addresses the need and potential for students to develop problem-solving skills as part of STEM learning.

Longitudinal Clustering of Students’ Self-Regulated Learning Behaviors in Engineering Design

It is vital to develop an understanding of students' self-regulatory processes in the domains of STEM (Science, Technology, Engineering, and Mathematics) for the quality delivery of STEM education. However, most studies have followed a variable-centered approach, leaving open the question of how specific SRL (Self-regulated Learning) behaviors group within individual learners. Furthermore, little is known about how students' SRL profiles unfold over time in STEM education, specifically in the context of engineering design.

Author/Presenter

Shan Li

Guanhua Chen

Wanli Xing

Juan Zheng

Charles Xie

Year
2020
Short Description

It is vital to develop an understanding of students' self-regulatory processes in the domains of STEM (Science, Technology, Engineering, and Mathematics) for the quality delivery of STEM education. However, most studies have followed a variable-centered approach, leaving open the question of how specific SRL (Self-regulated Learning) behaviors group within individual learners. Furthermore, little is known about how students' SRL profiles unfold over time in STEM education, specifically in the context of engineering design. In this study, we examined the change of students’ SRL profiles over time as 108 middle school students designed green buildings in a simulation-based computer-aided design (CAD) environment

Examining Temporal Dynamics of Self-Regulated Learning Behaviors in STEM Learning: A Network Approach

From a network perspective, self-regulated learning (SRL) can be conceptualized as networks of mutually interacting self-regulatory learning behaviors. Nevertheless, the research on how SRL behaviors dynamically interact over time in a network architecture is still in its infancy, especially in the context of STEM (sciences, technology, engineering, and math) learning.

Author/Presenter

Shan Li

Hanxiang Du

Wanli Xing

Juan Zheng

Guanhua Chen

Charles Xie

Year
2020
Short Description

From a network perspective, self-regulated learning (SRL) can be conceptualized as networks of mutually interacting self-regulatory learning behaviors. Nevertheless, the research on how SRL behaviors dynamically interact over time in a network architecture is still in its infancy, especially in the context of STEM (sciences, technology, engineering, and math) learning. In the present paper, we used a multilevel vector autoregression (VAR) model to examine the temporal dynamics of SRL behaviors as 101 students designed green buildings in Energy3D, a simulation-based computer-aided design (CAD) environment.

Classroom Orchestration of Computer Simulations for Science and Engineering Learning: A Multiple-Case Study Approach

This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.

Author/Presenter

Jennifer Chiu

Ying Ying Seah

James P. Bywater

Corey Schimpf

Tugba Karabiyik

Sanjay Rebello

Charles Xie

Short Description

This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.

Classroom Orchestration of Computer Simulations for Science and Engineering Learning: A Multiple-Case Study Approach

This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.

Author/Presenter

Jennifer Chiu

Ying Ying Seah

James P. Bywater

Corey Schimpf

Tugba Karabiyik

Sanjay Rebello

Charles Xie

Short Description

This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.

Classroom Orchestration of Computer Simulations for Science and Engineering Learning: A Multiple-Case Study Approach

This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.

Author/Presenter

Jennifer Chiu

Ying Ying Seah

James P. Bywater

Corey Schimpf

Tugba Karabiyik

Sanjay Rebello

Charles Xie

Short Description

This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.