High

Toward a Productive Definition of Technology in Science and STEM Education

The lack of a definition of the T in STEM (science, technology, engineering, and mathematics) acronym is pervasive, and it is often the teachers of STEM disciplines who inherit the task of defining the role of technology within their K-12 classrooms. These definitions often vary significantly, and they have profound implications for curricular and instructional goals within science and STEM classrooms.

Author/Presenter

Joshua Ellis

Jeanna Wieselmann

Ramya Sivaraj

Gillian Roehrig

Emily Dare

Elizabeth Ring-Whalen

Year
2020
Short Description

This theoretical paper summarizes of technology initiatives across science and STEM education from the past 30 years to present perspectives on the role of technology in science-focused STEM education.

Toward a Productive Definition of Technology in Science and STEM Education

The lack of a definition of the T in STEM (science, technology, engineering, and mathematics) acronym is pervasive, and it is often the teachers of STEM disciplines who inherit the task of defining the role of technology within their K-12 classrooms. These definitions often vary significantly, and they have profound implications for curricular and instructional goals within science and STEM classrooms.

Author/Presenter

Joshua Ellis

Jeanna Wieselmann

Ramya Sivaraj

Gillian Roehrig

Emily Dare

Elizabeth Ring-Whalen

Year
2020
Short Description

This theoretical paper summarizes of technology initiatives across science and STEM education from the past 30 years to present perspectives on the role of technology in science-focused STEM education.

Toward a Productive Definition of Technology in Science and STEM Education

The lack of a definition of the T in STEM (science, technology, engineering, and mathematics) acronym is pervasive, and it is often the teachers of STEM disciplines who inherit the task of defining the role of technology within their K-12 classrooms. These definitions often vary significantly, and they have profound implications for curricular and instructional goals within science and STEM classrooms.

Author/Presenter

Joshua Ellis

Jeanna Wieselmann

Ramya Sivaraj

Gillian Roehrig

Emily Dare

Elizabeth Ring-Whalen

Year
2020
Short Description

This theoretical paper summarizes of technology initiatives across science and STEM education from the past 30 years to present perspectives on the role of technology in science-focused STEM education.

Computational Participation and the Learner‐Technology Pairing in K‐12 STEM Education

The role of technology in STEM education remains unclear and needs stronger operational definition. In this paper, we explore the theoretical connection between STEM and emergent technologies, with a focus on learner behaviors and the potential of technology-mediated experiences with computational participation (CP) in shaping STEM learning. In particular, by de-emphasizing what technology is used and bringing renewed focus to how the technology is used, we make a case for CP as an epistemological and pedagogical approach that promotes collaborative STEM practices.

Author/Presenter

Ramya Sivaraj

Joshua A. Ellis

Jeanna R. Wieselmann

Gillian H. Roehrig

Year
2020
Short Description

This paper explores the theoretical connection between STEM and emergent technologies, with a focus on learner behaviors and the potential of technology-mediated experiences with computational participation (CP) in shaping STEM learning.

Computational Participation and the Learner‐Technology Pairing in K‐12 STEM Education

The role of technology in STEM education remains unclear and needs stronger operational definition. In this paper, we explore the theoretical connection between STEM and emergent technologies, with a focus on learner behaviors and the potential of technology-mediated experiences with computational participation (CP) in shaping STEM learning. In particular, by de-emphasizing what technology is used and bringing renewed focus to how the technology is used, we make a case for CP as an epistemological and pedagogical approach that promotes collaborative STEM practices.

Author/Presenter

Ramya Sivaraj

Joshua A. Ellis

Jeanna R. Wieselmann

Gillian H. Roehrig

Year
2020
Short Description

This paper explores the theoretical connection between STEM and emergent technologies, with a focus on learner behaviors and the potential of technology-mediated experiences with computational participation (CP) in shaping STEM learning.

Computational Participation and the Learner‐Technology Pairing in K‐12 STEM Education

The role of technology in STEM education remains unclear and needs stronger operational definition. In this paper, we explore the theoretical connection between STEM and emergent technologies, with a focus on learner behaviors and the potential of technology-mediated experiences with computational participation (CP) in shaping STEM learning. In particular, by de-emphasizing what technology is used and bringing renewed focus to how the technology is used, we make a case for CP as an epistemological and pedagogical approach that promotes collaborative STEM practices.

Author/Presenter

Ramya Sivaraj

Joshua A. Ellis

Jeanna R. Wieselmann

Gillian H. Roehrig

Year
2020
Short Description

This paper explores the theoretical connection between STEM and emergent technologies, with a focus on learner behaviors and the potential of technology-mediated experiences with computational participation (CP) in shaping STEM learning.

Constructing Goals for Student Learning through Conversation

Learning goals differ from performance goals. We elaborate on their function and importance as the guiding force behind maintaining cognitive rigor during mathematics learning.

Hunt, J. & Stein, M. K. (2020). Constructing goals for student learning through conversation. Mathematics Teacher: Learning and Teaching PK-12, 113(11), 904-909.

Author/Presenter

Jessica Hunt

Mary Kay Stein

Year
2020
Short Description

Learning goals differ from performance goals. This article elaborates on their function and importance as the guiding force behind maintaining cognitive rigor during mathematics learning.

Development and Pilot Testing of a Three-Dimensional, Phenomenon-based Unit that Integrates Evolution and Heredity

To realize the promise of the Next Generation Science Standards, educators require new three-dimensional, phenomenon-based curriculum materials. We describe and report on pilot test results from such a resource—Evolution: DNA and the Unity of Life. Designed for the Next Generation Science Standards, this freely available unit was developed for introductory high school biology students. It builds coherent understanding of evolution over the course of seven to 8 weeks.

Author/Presenter

Sheila A. Homburger

Dina Drits‑Esser

Molly Malone

Kevin Pompei

Kagan Breitenbach

Ryan D. Perkins

Pete C. Anderson

Nicola C. Barber

Amy J. Hawkins

Sam Katz

Max Kelly

Harmony Starr

Kristin M. Bass

Jo Ellen Roseman

Joseph Hardcastle

George DeBoer

Louisa A. Stark

Lead Organization(s)
Year
2019
Short Description

Describes development and pilot testing of a 3-dimensional, phenomenon-based unit that integrates evolution and heredity. The 8-week unit is designed for introductory-level high school biology courses. Results from a national pilot test with 944 grade nine and ten students in 16 teachers' classrooms show statistically significant gains with large effect sizes from pretest to posttest in students' conceptual understanding of evolution and heredity. Students also gained sill in identifying claims, evidence and reasoning in scientific arguments.

Building Argumentation Skills in the Biology Classroom: An Evolution Unit that Develops Students’ Capacity to Construct Arguments from Evidence

Arguing from evidence is one of eight key science practices in which students should engage. It is an essential component of science, yet students have difficulties with this practice. We describe a scaffolded claimsevidence-reasoning (CER) argumentation framework that is embedded within a new eight-week, freely available curriculum unit developed by the Genetic Science Learning Center – Evolution: DNA and the Unity of Life. The scaffold provides high school students with practice in both developing and evaluating written arguments.

Author/Presenter

Sheila A. Homburger

Dina Drits-Esser

Molly Malone

Louisa A. Stark

Lead Organization(s)
Year
2021
Short Description

Describes a scaffolded claims-evidence-reasoning (CER) argumentation framework that is embedded within a new eight-week, freely available curriculum unit developed by the Genetic Science Learning Center – Evolution: DNA and the Unity.

What You Find Depends on How You See: Examining Asset and Deficit Perspectives of Preservice Science Teachers’ Knowledge and Learning

This article explores how scholars have framed studies of preservice science teacher (PST) knowledge and learning over the past twelve years. We examined relevant studies between 2008

Author/Presenter

Ron Gray

Scott McDonald

David Stroupe

Lead Organization(s)
Year
2021
Short Description

This article explores how scholars have framed studies of preservice science teacher (PST) knowledge and learning over the past twelve years.