Engaging Teachers in Integrating Human-Centered Design for Geometry Problem-based Instruction
The project engages math teachers in lesson study to design and implement design-based lessons to teach geometry concepts.

The project engages math teachers in lesson study to design and implement design-based lessons to teach geometry concepts.
This project contributes to advancing knowledge on STEM education focusing on societal challenges by harnessing the convergence of STEM subjects, including data science and computer science, to empower all students, especially multilingual learners (MLs). The research seeks to make two significant contributions. First, the project will develop a conceptual framework for multi-disciplinary STEM education with MLs to address pressing societal challenges. Second, the project will translate this conceptual framework into practical implementation in classrooms.
Our poster addresses the focal area of Building Partnerships and Collaborating, by examining how the University of Texas at El Paso (UTEP) and Fabens Independent School District (FISD) partnership was created and how collaboration developed among the partners. We examine the implementation of Liberating Structures to develop authentic relationships, establish interaction norms, and open and transparent communication. These three elements of our partnership development resulted in flattening the traditional hierarchy often present in research-practice partnerships.
Engineering has emerged as a promising context for STEM integration in K-12 schools. In the previous decade, the field has seen an increase in curricular resources and pedagogical approaches that invite students to utilize mathematics and science as they engage in engineering practices. This Innovation to Practice paper highlights one effort to meaningfully integrate mathematics and science through engineering in middle school classrooms. The STEM-ID engineering course sequence consists of three 18-week middle school engineering courses.
Engineering has emerged as a promising context for STEM integration in K-12 schools. In the previous decade, the field has seen an increase in curricular resources and pedagogical approaches that invite students to utilize mathematics and science as they engage in engineering practices. This Innovation to Practice paper highlights one effort to meaningfully integrate mathematics and science through engineering in middle school classrooms.
Science and engineering offer ways to maintain the thermal comfort of our homes while minimizing impacts on the environment. This article introduces the Energy-Plus House Design Project, an NGSS-aligned curriculum unit developed to inspire and prepare high school students for tackling this challenge. In this project, students learn and practice science and engineering by designing a house that generates more renewable energy than it consumes over the course of a year (hence known as an energy-plus house).
Science and engineering offer ways to maintain the thermal comfort of our homes while minimizing impacts on the environment. This article introduces the Energy-Plus House Design Project, an NGSS-aligned curriculum unit developed to inspire and prepare high school students for tackling this challenge. In this project, students learn and practice science and engineering by designing a house that generates more renewable energy than it consumes over the course of a year (hence known as an energy-plus house).
Science and engineering offer ways to maintain the thermal comfort of our homes while minimizing impacts on the environment. This article introduces the Energy-Plus House Design Project, an NGSS-aligned curriculum unit developed to inspire and prepare high school students for tackling this challenge. In this project, students learn and practice science and engineering by designing a house that generates more renewable energy than it consumes over the course of a year (hence known as an energy-plus house).
Science and engineering offer ways to maintain the thermal comfort of our homes while minimizing impacts on the environment. This article introduces the Energy-Plus House Design Project, an NGSS-aligned curriculum unit developed to inspire and prepare high school students for tackling this challenge. In this project, students learn and practice science and engineering by designing a house that generates more renewable energy than it consumes over the course of a year (hence known as an energy-plus house).
A teacher’s working context is an important factor in how they make sense of and enact curriculum. Understanding how external factors (e.g. state and/or district policies, school cultural norms) interplay with teachers’ personal resources (e.g. self-understanding, rules of thumb for decision-making) can help identify supports for implementation of increasingly available standard aligned curriculum materials. However, in science education, limited research has explored how curriculum enactments are influenced by this complex interplay.
A teacher’s working context is an important factor in how they make sense of and enact curriculum. Understanding how external factors (e.g. state and/or district policies, school cultural norms) interplay with teachers’ personal resources (e.g. self-understanding, rules of thumb for decision-making) can help identify supports for implementation of increasingly available standard aligned curriculum materials. However, in science education, limited research has explored how curriculum enactments are influenced by this complex interplay. In this qualitative embedded case study, we investigated how four middle school science teachers within the same school district used their internal resources to make sense of external factors when enacting new NGSS-aligned place-based curriculum materials.
There are few guidelines related to how to implement integrated STEM education in the K-12 science classroom. It is important that teachers have opportunities to reflect on integrated STEM instruction when implemented so that they may further develop their practice. This research aimed to understand how the STEM Observation Protocol (STEM-OP) may be used as a way for teachers to reflect on their integrated STEM practice.
There are few guidelines related to how to implement integrated STEM education in the K-12 science classroom. It is important that teachers have opportunities to reflect on integrated STEM instruction when implemented so that they may further develop their practice. This research aimed to understand how the STEM Observation Protocol (STEM-OP) may be used as a way for teachers to reflect on their integrated STEM practice. This exploratory case study was designed to better understand secondary science teachers’ reflections on the STEM-OP by addressing the following research questions: 1) What are secondary science teachers’ reflections on integrated STEM practices as measured by the STEM-OP? and 2) In what ways do secondary science teachers envision using the STEM-OP as a tool in their practice?
This study examines the demographics, qualifications, and turnover of STEM teachers in Kansas and Missouri—two contiguous, predominantly rural states in the Midwestern region of the United States. The existing literature lacks detailed insights regarding U.S. STEM teachers, especially with recent economic and social changes over the COVID-19 pandemic, and there is particularly limited evidence regarding STEM teachers in the U.S. Midwest.
This study examines the demographics, qualifications, and turnover of STEM teachers in Kansas and Missouri—two contiguous, predominantly rural states in the Midwestern region of the United States. The existing literature lacks detailed insights regarding U.S. STEM teachers, especially with recent economic and social changes over the COVID-19 pandemic, and there is particularly limited evidence regarding STEM teachers in the U.S. Midwest. Utilizing large-scale administrative longitudinal data, we filled part of this gap by documenting the characteristics and turnover patterns of STEM teachers in Kansas and Missouri over a 13-year period, from 2010 through 2023.
This study explored secondary science teachers’ attending and interpretation of three science and engineering practices (SEPs) occurring in a classroom setting. This data were further examined to see if teaching experience and disciplinary area influenced the secondary science teachers attending and interpretation of the SEPs. The data collection process involved having teachers talk about the science instruction they viewed in short videos.
This study explored secondary science teachers’ attending and interpretation of three science and engineering practices (SEPs) occurring in a classroom setting. This data were further examined to see if teaching experience and disciplinary area influenced the secondary science teachers attending and interpretation of the SEPs.