High

Analyzing Teacher Learning in a Community of Practice Centered on Video Cases of Mathematics Teaching

Incorporating video case study of mathematics teaching into professional development (PD) can provide opportunities for teachers to develop new ways of seeing teaching and learning and inform efforts to enact new instructional practices. However, more research is needed to understand how such PD can foster sustained teacher learning about high-quality instruction and materials. In this paper, we share the evolution of our analytic method that aims to reveal how secondary mathematics teachers learn while collectively analyzing video of mathematics teaching.

Author/Presenter

Youngjun Kim

Victoria D. Bonaccorso

Mustafa M. Mohamed

Helene S. Leonard

Joseph DiNapoli

Eileen Murray

Lead Organization(s)
Year
2021
Short Description

Incorporating video case study of mathematics teaching into professional development (PD) can provide opportunities for teachers to develop new ways of seeing teaching and learning and inform efforts to enact new instructional practices. However, more research is needed to understand how such PD can foster sustained teacher learning about high-quality instruction and materials. In this paper, we share the evolution of our analytic method that aims to reveal how secondary mathematics teachers learn while collectively analyzing video of mathematics teaching.

Digging into Data: Illustrating a Data Investigation Process

Lee, H.S., Mojica, G. M., & Thrasher, E. (2022). Digging into data: Illustrating an investigative process. Statistics Teacher.

Author/Presenter

Hollylynne S. Lee

Gemma F. Mojica

Emily Thrasher

Year
2022
Short Description

In this article, authors described the six-phase data investigation process for analyzing large-scale quantitative and categorical data.

Investigating Data Like a Data Scientist: Key Practices and Processes

With a call for schools to infuse data across the curriculum, many are creating curricula and examining students’ thinking in data-intensive problems. As the discipline of statistics education broadens to data science education, there is a need to examine how practices in data science can inform work in K-12. We synthesize literature about statistics investigation processes, data science as a field and practices of data scientists. Further, we provide results from an ethnographic and interview study of the work of data scientists.

Author/Presenter

Hollylynne Lee

Gemma Mojica

Emily Thrasher

Peter Baumgartner

Year
2022
Short Description

As the discipline of statistics education broadens to data science education, there is a need to examine how practices in data science can inform work in K-12. We synthesize literature about statistics investigation processes, data science as a field and practices of data scientists. Further, we provide results from an ethnographic and interview study of the work of data scientists.

Establishing Student Mathematical Thinking as an Object of Class Discussion

Productive use of student mathematical thinking is a critical yet incompletely understood dimension of effective teaching practice. We have previously conceptualized the teaching practice of building on student mathematical thinking and the four elements that comprise it. In this paper we begin to unpack this complex practice by looking closely at its first element, establish.

Author/Presenter

Keith R. Leatham

Laura R. Van Zoest

Ben Freeburn

Blake E. Peterson

Shari L. Stockero

Year
2021
Short Description

Productive use of student mathematical thinking is a critical yet incompletely understood dimension of effective teaching practice. We have previously conceptualized the teaching practice of building on student mathematical thinking and the four elements that comprise it. In this paper we begin to unpack this complex practice by looking closely at its first element, establish. Based on an analysis of secondary mathematics teachers’ enactments of building, we describe two critical aspects of establish—establish precision and establish an object—and the actions teachers take in association with these aspects.

Establishing Student Mathematical Thinking as an Object of Class Discussion

Productive use of student mathematical thinking is a critical yet incompletely understood dimension of effective teaching practice. We have previously conceptualized the teaching practice of building on student mathematical thinking and the four elements that comprise it. In this paper we begin to unpack this complex practice by looking closely at its first element, establish.

Author/Presenter

Keith R. Leatham

Laura R. Van Zoest

Ben Freeburn

Blake E. Peterson

Shari L. Stockero

Year
2021
Short Description

Productive use of student mathematical thinking is a critical yet incompletely understood dimension of effective teaching practice. We have previously conceptualized the teaching practice of building on student mathematical thinking and the four elements that comprise it. In this paper we begin to unpack this complex practice by looking closely at its first element, establish. Based on an analysis of secondary mathematics teachers’ enactments of building, we describe two critical aspects of establish—establish precision and establish an object—and the actions teachers take in association with these aspects.

Establishing Student Mathematical Thinking as an Object of Class Discussion

Productive use of student mathematical thinking is a critical yet incompletely understood dimension of effective teaching practice. We have previously conceptualized the teaching practice of building on student mathematical thinking and the four elements that comprise it. In this paper we begin to unpack this complex practice by looking closely at its first element, establish.

Author/Presenter

Keith R. Leatham

Laura R. Van Zoest

Ben Freeburn

Blake E. Peterson

Shari L. Stockero

Year
2021
Short Description

Productive use of student mathematical thinking is a critical yet incompletely understood dimension of effective teaching practice. We have previously conceptualized the teaching practice of building on student mathematical thinking and the four elements that comprise it. In this paper we begin to unpack this complex practice by looking closely at its first element, establish. Based on an analysis of secondary mathematics teachers’ enactments of building, we describe two critical aspects of establish—establish precision and establish an object—and the actions teachers take in association with these aspects.

ReLaTe-SA: An Effort to Understand Teachers’ Reasoning Language in Algebra

The purpose of the Reasoning Language for Teaching Secondary Algebra (ReLaTe-SA) project is to understand teachers' use of reasoning language for teaching concepts and procedures in middle and high school algebra. Previous studies on algebra and algebraic reasoning have investigated other aspects, including students’ conceptions and discourse. The link between students' discourse and conceptual understanding has been explored (Chesnais & Constantin, 2020; Reinhardtsen, 2020). However, less is known about middle and high school teachers' language in the algebra classroom.

Author/Presenter

Mehmet Kirmizi

Lead Organization(s)
Year
2022
Short Description

The ReLaTe-SA project investigates the research question: what language do teachers use to describe and explain routines in algebra classes? The goal of this article is to inform readers about some ways we have learned to describe the discourse that teachers use when solving linear equations.

Teaching Earth and Environmental Science using Model-Evidence Link Diagrams

High-quality science education is essential for students to become scientifically literate. Model-Evidence Link (MEL) diagrams and build-a-MEL (baMEL) diagrams are instructional scaffolds that create an opportunity for students to build scientific understanding through the evaluation of the connections between evidence and alternative explanations of a scientific phenomenon. The MELs and baMELs allow for a natural incorporation of three-dimensional learning that has been recommended by the Next Generation Science Standards to enhance students’ comprehension.

Author/Presenter

Erin Colfax

Ananya M. Matewos

Janelle M. Bailey

Lead Organization(s)
Year
2020
Short Description

High-quality science education is essential for students to become scientifically literate. Model-Evidence Link (MEL) diagrams and build-a-MEL (baMEL) diagrams are instructional scaffolds that create an opportunity for students to build scientific understanding through the evaluation of the connections between evidence and alternative explanations of a scientific phenomenon. The MELs and baMELs allow for a natural incorporation of three-dimensional learning that has been recommended by the Next Generation Science Standards to enhance students’ comprehension. Through this science teaching methodology, students are able to see that by diagramming and then writing about one’s thoughts about the connections between evidence and explanations, one can deepen their understanding of scientific concepts.

The Origins build-a-MEL: Introducing a Scaffold to Explore the Origins of the Universe

The origin of the Universe is something that people have pondered for thousands of years. As evidence has mounted, the Big Bang theory has become the consensus scientific model. Much of this same evidence refutes opposing theories such as the earlier Steady State model. The NGSS for high school includes the nature of and evidence for the Big Bang, providing a rich opportunity to explore—with the help of a scaffold—the connections between evidence and competing models about the origins of the Universe.

Author/Presenter

Janelle M. Bailey

Timothy G. Klavon

Archana Dobaria

Lead Organization(s)
Year
2020
Short Description

The origin of the Universe is something that people have pondered for thousands of years. As evidence has mounted, the Big Bang theory has become the consensus scientific model. Much of this same evidence refutes opposing theories such as the earlier Steady State model. The NGSS for high school includes the nature of and evidence for the Big Bang, providing a rich opportunity to explore—with the help of a scaffold—the connections between evidence and competing models about the origins of the Universe.

No Science Fair? No Problem. Engaging Students in Science Communication through Peer Review and Publication in a Remote World

Since March 2020, in-person science competitions have been cancelled or moved to a virtual space. This reality has encouraged teachers and students to find alternative ways to disseminate student research and participate in a scientific community. Participating in the peer review and publication of one’s research offers one such alternative. The Journal of Emerging Investigators (JEI) is a free, online, peer-reviewed science journal specifically for middle school and high school students.

Author/Presenter

Eddie Rodriguez

Michael Mazzola

Sarah C. Fankhauser

Lead Organization(s)
Year
2022
Short Description

This article describes resources that are freely available to help teachers navigate the peer review and publication processes and guide their students through the successful completion of submission and publication of their research papers.