Teacher Practice

Secondary Chemistry Teacher Learning: Precursors for and Mechanisms of Pedagogical Conceptual Change

Despite years of research and practice inspired by chemistry education research, a recent report shows that US secondary instruction is not aligned with current national reform-based efforts. One means to mitigate this discrepancy is focusing on pedagogical conceptual change, its precursors (higher self-efficacy and pedagogical discontentment), and the subtleties of its mechanisms (assimilation and accommodation). In this study, we investigate the final reflections of participants (N = 35) who completed our professional development program known as the VisChem Institute (VCI).

Author/Presenter

Lead Organization(s)
Year
2023
Short Description

Despite years of research and practice inspired by chemistry education research, a recent report shows that US secondary instruction is not aligned with current national reform-based efforts. One means to mitigate this discrepancy is focusing on pedagogical conceptual change, its precursors (higher self-efficacy and pedagogical discontentment), and the subtleties of its mechanisms (assimilation and accommodation). In this study, we investigate the final reflections of participants (N = 35) who completed our professional development program known as the VisChem Institute (VCI).

Documenting Professional Learning Focused on Implementing High-Quality Instructional Materials in Mathematics: The AIM–TRU Learning Cycle

Author/Presenter

John Lawson Russell

Joseph DiNapoli

Eileen Murray

Lead Organization(s)
Year
2022
Short Description

The research contained in this article used qualitative methods to articulate and test the design underlying our professional learning cycle by advancing conjecture mapping, a device by which the embodiments of the design are made transparent to be analyzed in practice.

Promoting Meaningful Conversations Among Prospective Mathematics Teachers

Recent circumstances due to the COVID-19 pandemic and restrictions on entering public schools have created barriers for prospective teachers (PT) to gain valuable exposure to real classrooms. As a result, we have transitioned some teacher preparation from in person experiences to video case study analysis. Our research seeks to determine how this transition can foster development of critical teaching skills by infusing a model of powerful teaching with video of real classrooms.

Author/Presenter

Victoria Bonaccorso

Joseph DiNapoli

Eileen Murray

Lead Organization(s)
Year
2022
Short Description

Recent circumstances due to the COVID-19 pandemic and restrictions on entering public schools have created barriers for prospective teachers (PT) to gain valuable exposure to real classrooms. As a result, we have transitioned some teacher preparation from in person experiences to video case study analysis. Our research seeks to determine how this transition can foster development of critical teaching skills by infusing a model of powerful teaching with video of real classrooms.

Investigating the Presence of Mathematics and the Levels of Cognitively Demanding Mathematical Tasks in Integrated STEM Units

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons.

Author/Presenter

Elizabeth N. Forde

Latanya Robinson

Joshua A. Ellis

Emily A. Dare

Year
2023
Short Description

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons. In order to seek insight pertaining to this gap in the literature, we sought to better understand how science teachers use mathematics within K-12 integrated STEM instruction.

Investigating the Presence of Mathematics and the Levels of Cognitively Demanding Mathematical Tasks in Integrated STEM Units

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons.

Author/Presenter

Elizabeth N. Forde

Latanya Robinson

Joshua A. Ellis

Emily A. Dare

Year
2023
Short Description

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons. In order to seek insight pertaining to this gap in the literature, we sought to better understand how science teachers use mathematics within K-12 integrated STEM instruction.

Investigating the Presence of Mathematics and the Levels of Cognitively Demanding Mathematical Tasks in Integrated STEM Units

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons.

Author/Presenter

Elizabeth N. Forde

Latanya Robinson

Joshua A. Ellis

Emily A. Dare

Year
2023
Short Description

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons. In order to seek insight pertaining to this gap in the literature, we sought to better understand how science teachers use mathematics within K-12 integrated STEM instruction.

Uncovering Core Dimensions of K-12 Integrated STEM

To address the lack of a classroom observation protocol aligned with integrated STEM, the author team developed one to measure the degree of integrated STEM instruction implemented in K-12 science and engineering classrooms. This study demonstrates how our instrument can be used to uncover the dimensions of integrated STEM instruction practiced in K-12 classrooms and to determine which protocol items are associated with each of these dimensions.

Author/Presenter

Year
2022
Short Description

To address the lack of a classroom observation protocol aligned with integrated STEM, the author team developed one to measure the degree of integrated STEM instruction implemented in K-12 science and engineering classrooms. This study demonstrates how our instrument can be used to uncover the dimensions of integrated STEM instruction practiced in K-12 classrooms and to determine which protocol items are associated with each of these dimensions.

Uncovering Core Dimensions of K-12 Integrated STEM

To address the lack of a classroom observation protocol aligned with integrated STEM, the author team developed one to measure the degree of integrated STEM instruction implemented in K-12 science and engineering classrooms. This study demonstrates how our instrument can be used to uncover the dimensions of integrated STEM instruction practiced in K-12 classrooms and to determine which protocol items are associated with each of these dimensions.

Author/Presenter

Year
2022
Short Description

To address the lack of a classroom observation protocol aligned with integrated STEM, the author team developed one to measure the degree of integrated STEM instruction implemented in K-12 science and engineering classrooms. This study demonstrates how our instrument can be used to uncover the dimensions of integrated STEM instruction practiced in K-12 classrooms and to determine which protocol items are associated with each of these dimensions.

Uncovering Core Dimensions of K-12 Integrated STEM

To address the lack of a classroom observation protocol aligned with integrated STEM, the author team developed one to measure the degree of integrated STEM instruction implemented in K-12 science and engineering classrooms. This study demonstrates how our instrument can be used to uncover the dimensions of integrated STEM instruction practiced in K-12 classrooms and to determine which protocol items are associated with each of these dimensions.

Author/Presenter

Year
2022
Short Description

To address the lack of a classroom observation protocol aligned with integrated STEM, the author team developed one to measure the degree of integrated STEM instruction implemented in K-12 science and engineering classrooms. This study demonstrates how our instrument can be used to uncover the dimensions of integrated STEM instruction practiced in K-12 classrooms and to determine which protocol items are associated with each of these dimensions.

Design Considerations for a Middle School Computer Science Pedagogical Content Knowledge Instrument

K- 12 Computer Science (CS) education is developing rapidly but still lacks a comprehensive measure for CS teachers’ pedagogical content knowledge (PCK) . We respond to this need by describing the design of a CS-PCK instrument for ‘Algorithms and Programming’ that measures three broad constructs: (a) teachers’ understanding of standards and standards-alignment, (b) teachers’ formative assessment practices, and (c) teachers’ self-efficacy for teaching and assessing CS.

Author/Presenter

Satabdi Basu

Daisy Rutstein

Carol Tate

Arif Rachmatullah

Hui Yang

Lead Organization(s)
Year
2022
Short Description

K- 12 Computer Science (CS) education is developing rapidly but still lacks a comprehensive measure for CS teachers’ pedagogical content knowledge (PCK). We respond to this need by describing the design of a CS-PCK instrument for ‘Algorithms and Programming’ that measures three broad constructs: (a) teachers’ understanding of standards and standards-alignment, (b) teachers’ formative assessment practices, and (c) teachers’ self-efficacy for teaching and assessing CS.