Science

Integrating Math and Science Through Engineering: Illustrative Examples from Curricula Implementation in Middle School Engineering Classrooms

Engineering has emerged as a promising context for STEM integration in K-12 schools. In the previous decade, the field has seen an increase in curricular resources and pedagogical approaches that invite students to utilize mathematics and science as they engage in engineering practices. This Innovation to Practice paper highlights one effort to meaningfully integrate mathematics and science through engineering in middle school classrooms. The STEM-ID engineering course sequence consists of three 18-week middle school engineering courses.

Author/Presenter

Jessica Gale

Dyanne Baptiste Porter

Meltem Alemdar

Sunni Newton

Jasmine Choi

Abeera Rehmat

Roxanne Moore

Year
2025
Short Description

Engineering has emerged as a promising context for STEM integration in K-12 schools. In the previous decade, the field has seen an increase in curricular resources and pedagogical approaches that invite students to utilize mathematics and science as they engage in engineering practices. This Innovation to Practice paper highlights one effort to meaningfully integrate mathematics and science through engineering in middle school classrooms.

Integrating Community Assets, Place-based Learning, and Career Development Through Project-based Learning in Rural Settings

Our study investigates the first year of a two-year place-based education (PBE) professional development model that focuses on career development in rural middle schools through project-based learning (PBL) units. Rural science, technology, engineering, and mathematics (STEM) educators face unique challenges, including geographic isolation, limited resources, and reduced access to professional development opportunities, which can hinder the effective integration of career-oriented learning in the classroom.

Author/Presenter

DeNae Kizys

Christine Lotter

Lucas Perez

Rachel Gilreath

Dodie Limberg

Lead Organization(s)
Year
2025
Short Description

Our study investigates the first year of a two-year place-based education (PBE) professional development model that focuses on career development in rural middle schools through project-based learning (PBL) units. Rural science, technology, engineering, and mathematics (STEM) educators face unique challenges, including geographic isolation, limited resources, and reduced access to professional development opportunities, which can hinder the effective integration of career-oriented learning in the classroom. We addressed these challenges by implementing professional development in which school counselors and teachers collaborate to design PBL units aligned with rural community local needs and STEM careers.

Co-designing Citizen Science Projects for Elementary Schools in New Hampshire Through Teacher and Community-based Extension Science Volunteer Partnerships

In the United States, reforms put forth by Next Generation Science Standards have increased the demand for K-12 teacher professional development in science instruction. This study investigates a new professional development model, entitled Schoolyard SITES, that partners elementary teachers with University of New Hampshire Cooperative Extension science volunteers to create a community-based partnership that improves teachers' understanding of NGSS-aligned instruction.

Author/Presenter

Lara M. Gengarelly

Sameer V. Honwad

Megan E. Glenn

Erik A. Froburg

Malin E. Clyde

Haley A. Andreozzi

Lead Organization(s)
Year
2025
Short Description

In the United States, reforms put forth by Next Generation Science Standards have increased the demand for K-12 teacher professional development in science instruction. This study investigates a new professional development model, entitled Schoolyard SITES, that partners elementary teachers with University of New Hampshire Cooperative Extension science volunteers to create a community-based partnership that improves teachers' understanding of NGSS-aligned instruction.

Restructuring the Science Curriculum Around Grand Challenges

Grand Challenges (GCs) are complex, global, and multifaceted science and societal problems such as climate change, viral pandemics, loss of biodiversity, and quests for new energy sources. In this article, we advance a position, based on current research and theory, that GCs should be a prominent feature of the science curriculum. This move towards a GC-based curriculum challenges the positioning of canonical scientific concepts as the central organising feature of the curriculum, which is typically the default position of most science education programmes.

Author/Presenter

Troy D. Sadler

Zhen Xu

David Fortus

Year
2025
Short Description

Grand Challenges (GCs) are complex, global, and multifaceted science and societal problems such as climate change, viral pandemics, loss of biodiversity, and quests for new energy sources. In this article, we advance a position, based on current research and theory, that GCs should be a prominent feature of the science curriculum. This move towards a GC-based curriculum challenges the positioning of canonical scientific concepts as the central organising feature of the curriculum, which is typically the default position of most science education programmes.

Learning Science and Engineering by Designing Sustainable Houses

Science and engineering offer ways to maintain the thermal comfort of our homes while minimizing impacts on the environment. This article introduces the Energy-Plus House Design Project, an NGSS-aligned curriculum unit developed to inspire and prepare high school students for tackling this challenge. In this project, students learn and practice science and engineering by designing a house that generates more renewable energy than it consumes over the course of a year (hence known as an energy-plus house).

Author/Presenter

Elena Sereiviene

Xiaotong Ding

Rundong Jiang

Dylan Bulseco

Charles Xie

Year
2025
Short Description

Science and engineering offer ways to maintain the thermal comfort of our homes while minimizing impacts on the environment. This article introduces the Energy-Plus House Design Project, an NGSS-aligned curriculum unit developed to inspire and prepare high school students for tackling this challenge. In this project, students learn and practice science and engineering by designing a house that generates more renewable energy than it consumes over the course of a year (hence known as an energy-plus house).

Learning Science and Engineering by Designing Sustainable Houses

Science and engineering offer ways to maintain the thermal comfort of our homes while minimizing impacts on the environment. This article introduces the Energy-Plus House Design Project, an NGSS-aligned curriculum unit developed to inspire and prepare high school students for tackling this challenge. In this project, students learn and practice science and engineering by designing a house that generates more renewable energy than it consumes over the course of a year (hence known as an energy-plus house).

Author/Presenter

Elena Sereiviene

Xiaotong Ding

Rundong Jiang

Dylan Bulseco

Charles Xie

Year
2025
Short Description

Science and engineering offer ways to maintain the thermal comfort of our homes while minimizing impacts on the environment. This article introduces the Energy-Plus House Design Project, an NGSS-aligned curriculum unit developed to inspire and prepare high school students for tackling this challenge. In this project, students learn and practice science and engineering by designing a house that generates more renewable energy than it consumes over the course of a year (hence known as an energy-plus house).

Fostering Critical Consciousness: A Systematic Review of K-12 Teachers’ Integrations of Sociopolitical Issues in Science and Mathematics Classrooms

Efforts towards providing inclusive science and mathematics education for marginalized students are increasingly found in literature advocating for equity-oriented instruction through supporting students’ critical consciousness. Despite a growing body of research centering on teachers’ development of culturally relevant pedagogies, studies examining how teachers support students’ critical consciousness development are scarce in the context of science and mathematics education.

Author/Presenter

Sheila K. Castro

Julie C. Brown

Kent J. Crippen

Lead Organization(s)
Year
2025
Short Description

Efforts towards providing inclusive science and mathematics education for marginalized students are increasingly found in literature advocating for equity-oriented instruction through supporting students’ critical consciousness. Despite a growing body of research centering on teachers’ development of culturally relevant pedagogies, studies examining how teachers support students’ critical consciousness development are scarce in the context of science and mathematics education. Thus, this systematic review uses empirical literature on critical consciousness to explore teachers’ experiences integrating sociopolitical issues into their science and mathematics classrooms.

Exploring Middle School Science Teachers’ Curriculum Sensemaking

A teacher’s working context is an important factor in how they make sense of and enact curriculum. Understanding how external factors (e.g. state and/or district policies, school cultural norms) interplay with teachers’ personal resources (e.g. self-understanding, rules of thumb for decision-making) can help identify supports for implementation of increasingly available standard aligned curriculum materials. However, in science education, limited research has explored how curriculum enactments are influenced by this complex interplay.

Author/Presenter

Gary Wright

Laura Zangori

Suzanne Otto

Rebekah Snyder

Laura Cole

Lead Organization(s)
Year
2025
Short Description

A teacher’s working context is an important factor in how they make sense of and enact curriculum. Understanding how external factors (e.g. state and/or district policies, school cultural norms) interplay with teachers’ personal resources (e.g. self-understanding, rules of thumb for decision-making) can help identify supports for implementation of increasingly available standard aligned curriculum materials. However, in science education, limited research has explored how curriculum enactments are influenced by this complex interplay. In this qualitative embedded case study, we investigated how four middle school science teachers within the same school district used their internal resources to make sense of external factors when enacting new NGSS-aligned place-based curriculum materials.

Expanding Uses of the STEM Observation Protocol (STEM-OP): Secondary Science Teachers’ Reflections on Integrated STEM Practice

There are few guidelines related to how to implement integrated STEM education in the K-12 science classroom. It is important that teachers have opportunities to reflect on integrated STEM instruction when implemented so that they may further develop their practice. This research aimed to understand how the STEM Observation Protocol (STEM-OP) may be used as a way for teachers to reflect on their integrated STEM practice.

Author/Presenter

Emily Dare

Joshua Ellis

Christopher Irwin

Lead Organization(s)
Year
2025
Short Description

There are few guidelines related to how to implement integrated STEM education in the K-12 science classroom. It is important that teachers have opportunities to reflect on integrated STEM instruction when implemented so that they may further develop their practice. This research aimed to understand how the STEM Observation Protocol (STEM-OP) may be used as a way for teachers to reflect on their integrated STEM practice. This exploratory case study was designed to better understand secondary science teachers’ reflections on the STEM-OP by addressing the following research questions: 1) What are secondary science teachers’ reflections on integrated STEM practices as measured by the STEM-OP? and 2) In what ways do secondary science teachers envision using the STEM-OP as a tool in their practice?

“Adapting for a Local Space Can be Tricky”: Designing Units for Teachers to Localize Through Phenomenon Adaptation

Learning science in the context of local phenomena and problems can be powerful for young people. Yet, designing place-based instructional materials is resource intensive, limiting broad access. This study investigates how instructional materials designed for widespread use can support teacher localization through phenomenon adaptation, whereby teachers add or swap phenomena relevant to students' interests, identities, and community.

Author/Presenter

Emily M. Harris

Lindsey Mohan

Adrienne A. Hanson

Katahdin A. Cook Whitt

Candice Guy-Gaytán

Lisa O. Kenyon

Year
2025
Short Description

Learning science in the context of local phenomena and problems can be powerful for young people. Yet, designing place-based instructional materials is resource intensive, limiting broad access. This study investigates how instructional materials designed for widespread use can support teacher localization through phenomenon adaptation, whereby teachers add or swap phenomena relevant to students' interests, identities, and community.