Engineering

I-Engineering Curriculum Resources

In the "How can I make my classroom more sustainable?" unit,  teachers and students collaboratively investigate how to make their classrooms more sustainable.  Using the teaching/learning process of Engineering for Sustainable Communities (EfSC), and two design challenges, students engage meaningfully in both the practices of engineering and the disciplinary core ideas of energy systems, transformations and sources (within the contexts of circuitry & renewable energy).

Author/Presenter

The I-Engineering Team

Lead Organization(s)
Year
2019
Short Description

In the "How can I make my classroom more sustainable?" unit,  teachers and students collaboratively investigate how to make their classrooms more sustainable.  Using the teaching/learning process of Engineering for Sustainable Communities (EfSC), and two design challenges, students engage meaningfully in both the practices of engineering and the disciplinary core ideas of energy systems, transformations and sources (within the contexts of circuitry & renewable energy). To make engineering more accessible to a wider range of learners, I-Engineering situates the engineering work in real world contexts and constraints, and focuses on both the technical and social dimensions to design work.

Design Technology and Engineering Education (DTEEL) Curriculum

Design Technology and Engineering Education (DTEEL) for bilingual English Learner Students is a K-5th grade curriculum focused on language development through engineering design and problem solving. Each grade level includes a series of units focused on different aspects of engineering: Materials, Structures, Mechanisms, and Work & Energy. The last two grade levels add units that synthesize these engineering components with a Systems focus on Systems. Each lesson includes instructional strategies to strategically integrate language use and engineering content.

Author/Presenter

The DTEEL Team

Lead Organization(s)
Year
2018
Short Description

Design Technology and Engineering Education (DTEEL) for bilingual English Learner Students is a K-5th grade curriculum focused on language development through engineering design and problem solving. Each grade level includes a series of units focused on different aspects of engineering: Materials, Structures, Mechanisms, and Work & Energy. The last two grade levels add units that synthesize these engineering components with a Systems focus on Systems. Each lesson includes instructional strategies to strategically integrate language use and engineering content.

Energy3D

Energy3D is a simulation-based engineering tool for designing green buildings and power stations that harness renewable energy to achieve sustainable development. Users can quickly sketch up a realistic-looking structure or import one from an existing CAD file, superimpose it on a map image (e.g., Google Maps or lot maps), and then evaluate its energy performance for any given day and location. Based on computational physics and weather data, Energy3D can rapidly generate time graphs (resembling data loggers) and heat maps (resembling infrared cameras) for in-depth analyses.

Author/Presenter

Charles Xie

Lead Organization(s)
Year
2021
Short Description

Energy3D is a simulation-based engineering tool for designing green buildings and power stations that harness renewable energy to achieve sustainable development. Users can quickly sketch up a realistic-looking structure or import one from an existing CAD file, superimpose it on a map image (e.g., Google Maps or lot maps), and then evaluate its energy performance for any given day and location. Based on computational physics and weather data, Energy3D can rapidly generate time graphs (resembling data loggers) and heat maps (resembling infrared cameras) for in-depth analyses. Artificial intelligence is also used to support generative design, engineering optimization, and automatic assessment. At the end of the design, Energy3D allows users to print it out, cut out the pieces, and use them to assemble a physical scale model.

Energy3D

Energy3D is a simulation-based engineering tool for designing green buildings and power stations that harness renewable energy to achieve sustainable development. Users can quickly sketch up a realistic-looking structure or import one from an existing CAD file, superimpose it on a map image (e.g., Google Maps or lot maps), and then evaluate its energy performance for any given day and location. Based on computational physics and weather data, Energy3D can rapidly generate time graphs (resembling data loggers) and heat maps (resembling infrared cameras) for in-depth analyses.

Author/Presenter

Charles Xie

Lead Organization(s)
Year
2021
Short Description

Energy3D is a simulation-based engineering tool for designing green buildings and power stations that harness renewable energy to achieve sustainable development. Users can quickly sketch up a realistic-looking structure or import one from an existing CAD file, superimpose it on a map image (e.g., Google Maps or lot maps), and then evaluate its energy performance for any given day and location. Based on computational physics and weather data, Energy3D can rapidly generate time graphs (resembling data loggers) and heat maps (resembling infrared cameras) for in-depth analyses. Artificial intelligence is also used to support generative design, engineering optimization, and automatic assessment. At the end of the design, Energy3D allows users to print it out, cut out the pieces, and use them to assemble a physical scale model.

Energy3D

Energy3D is a simulation-based engineering tool for designing green buildings and power stations that harness renewable energy to achieve sustainable development. Users can quickly sketch up a realistic-looking structure or import one from an existing CAD file, superimpose it on a map image (e.g., Google Maps or lot maps), and then evaluate its energy performance for any given day and location. Based on computational physics and weather data, Energy3D can rapidly generate time graphs (resembling data loggers) and heat maps (resembling infrared cameras) for in-depth analyses.

Author/Presenter

Charles Xie

Lead Organization(s)
Year
2021
Short Description

Energy3D is a simulation-based engineering tool for designing green buildings and power stations that harness renewable energy to achieve sustainable development. Users can quickly sketch up a realistic-looking structure or import one from an existing CAD file, superimpose it on a map image (e.g., Google Maps or lot maps), and then evaluate its energy performance for any given day and location. Based on computational physics and weather data, Energy3D can rapidly generate time graphs (resembling data loggers) and heat maps (resembling infrared cameras) for in-depth analyses. Artificial intelligence is also used to support generative design, engineering optimization, and automatic assessment. At the end of the design, Energy3D allows users to print it out, cut out the pieces, and use them to assemble a physical scale model.

Conceive Design Implement Operate Initiative 18th International CDIO Conference; Reykjavík, Iceland

Event Date
-

To learn more, visit https://cdio2022.ru.is/.

DRK-12 Presentations

  • Measuring Teacher Quality: Surveys Versus Video-based Think Aloud Protocols (Presenters: Karen Koellner, Nanette Seago, Nicora Placa, and Amanda Riske)
Discipline/Topic
Event Type

Strengthening STEM Teaching in Native American Serving Schools through Long-Term, Culturally Responsive Professional Development

Principal Investigator:

This is a 4-year, level II Exploratory study within the teaching strand of DRK12. The research explores the functioning and impact of a nationally-developed STEM professional development model within the Navajo Nation. Teacher participants represent the entire K-12 grade range and multiple content areas, and they all participate in an innovative STEM-content, culturally responsive, 8-month professional development fellowship. We explore the extent to which culturally responsive principles are evident in their self-authored curriculum units.

Click image to preview:
Target Audience:

Integrating Science with Mathematics and Engineering: Linking Home and School Learning for All Young Learners

Principal Investigator:

This study investigates the integration of early science with mathematics and engineering and involves co-designing resources with preschool teachers and families from historically underserved communities to provide preschool children equitable STEM learning experiences. The study also explores connections between home and school learning and involves designing resources to support multilingual learners, who represent a large (and growing) proportion of the population served in public preschool programs.

Click image to preview:
Target Audience:

Developing Teacher Noticing in Engineering in an Online Professional Development Program

Principal Investigator:

The Teacher Engineering Education Program is designed to support teacher learning in engineering education in an 18-month online asynchronous program. In this project, we collected data from two cohorts of elementary teachers (N=26) including multiple interviews throughout the program, teachers’ video recordings of their classroom teaching, and their coursework in the four required courses. This poster summarizes our central findings on teacher learning in the program, looking at teachers’ noticing and pedagogical sensemaking in engineering.

Click image to preview: