Conceive Design Implement Operate Initiative 19th International CDIO Conference; Trondheim, Norway
To learn more, visit https://www.ntnu.edu/cdio.
To learn more, visit https://www.ntnu.edu/cdio.
To learn more, visit https://www.asee.org/events/Conferences-and-Meetings/2023-Annual-Confer….
This study explores two teachers participating in professional development workshops implementing SocioScientific Issues (SSI) into STEM classrooms. Two research questions were investigated: (a) To what extent did teachers implement SSI into their lesson plans and (b) In what ways did lessons change from the beginning of the workshop?
This study explores two teachers participating in professional development workshops implementing SocioScientific Issues (SSI) into STEM classrooms. Two research questions were investigated: (a) To what extent did teachers implement SSI into their lesson plans and (b) In what ways did lessons change from the beginning of the workshop?
This study explores two teachers participating in professional development workshops implementing SocioScientific Issues (SSI) into STEM classrooms. Two research questions were investigated: (a) To what extent did teachers implement SSI into their lesson plans and (b) In what ways did lessons change from the beginning of the workshop?
This study explores two teachers participating in professional development workshops implementing SocioScientific Issues (SSI) into STEM classrooms. Two research questions were investigated: (a) To what extent did teachers implement SSI into their lesson plans and (b) In what ways did lessons change from the beginning of the workshop?
It is vital to develop an understanding of students' self-regulatory processes in the domains of STEM (Science, Technology, Engineering, and Mathematics) for the quality delivery of STEM education. However, most studies have followed a variable-centered approach, leaving open the question of how specific SRL (Self-regulated Learning) behaviors group within individual learners. Furthermore, little is known about how students' SRL profiles unfold over time in STEM education, specifically in the context of engineering design.
It is vital to develop an understanding of students' self-regulatory processes in the domains of STEM (Science, Technology, Engineering, and Mathematics) for the quality delivery of STEM education. However, most studies have followed a variable-centered approach, leaving open the question of how specific SRL (Self-regulated Learning) behaviors group within individual learners. Furthermore, little is known about how students' SRL profiles unfold over time in STEM education, specifically in the context of engineering design. In this study, we examined the change of students’ SRL profiles over time as 108 middle school students designed green buildings in a simulation-based computer-aided design (CAD) environment
From a network perspective, self-regulated learning (SRL) can be conceptualized as networks of mutually interacting self-regulatory learning behaviors. Nevertheless, the research on how SRL behaviors dynamically interact over time in a network architecture is still in its infancy, especially in the context of STEM (sciences, technology, engineering, and math) learning.
From a network perspective, self-regulated learning (SRL) can be conceptualized as networks of mutually interacting self-regulatory learning behaviors. Nevertheless, the research on how SRL behaviors dynamically interact over time in a network architecture is still in its infancy, especially in the context of STEM (sciences, technology, engineering, and math) learning. In the present paper, we used a multilevel vector autoregression (VAR) model to examine the temporal dynamics of SRL behaviors as 101 students designed green buildings in Energy3D, a simulation-based computer-aided design (CAD) environment.
This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.
This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.
This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.
This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.
This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.
This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels.
Computer-aided design (CAD) programs are essential to engineering as they allow for better designs through low-cost iterations. While CAD programs are typically taught to undergraduate students as a job skill, such software can also help students learn engineering concepts. A current limitation of CAD programs (even those that are specifically designed for educational purposes) is that they are not capable of providing automated real-time help to students.
Computer-aided design (CAD) programs are essential to engineering as they allow for better designs through low-cost iterations. While CAD programs are typically taught to undergraduate students as a job skill, such software can also help students learn engineering concepts. A current limitation of CAD programs (even those that are specifically designed for educational purposes) is that they are not capable of providing automated real-time help to students. To encourage CAD programs to build in assistance to students, we used data generated from students using a free, open-source CAD software called Aladdin to demonstrate how student data combined with machine learning techniques can predict how well a particular student will perform in a design task.