Elementary

Empirical Recovery of Learning Progressions Through the Lens of Educators

Learning progressions represent the relationship between concepts within a domain and how students develop increasingly sophisticated thinking therein. Typical evidence sources used to validate theorized learning progressions are also used to validate the use and interpretation of assessments, such as student cognitive interviews and psychometric analyses of item responses on assessments (Alonzo, 2018; Duschl et al., 2011).

Author/Presenter

Leanne R. Ketterlin-Geller

Yetunde Zannou

Anthony Sparks

Lindsey Perry

Year
2020
Short Description

In this manuscript, we propose that educators’ perspectives may serve as an independent source of evidence that can be integrated with traditional evidence sources (e.g., cognitive interviews with students, psychometric data). This manuscript describes two studies that used surveys to draw on educator knowledge of students to identify upper and lower bounds of a learning progression (MMaRS study) and to understand the order of intermediary phases of learning (ESTAR study).

PST Learning to Facilitate Argumentation Via Simulation: Exploring the Role of Understanding and Emotion

The present study focuses on examining transitions in elementary pre-service teachers (PSTs)’ understanding of, and skills in, leading argumentation-focused discussions in mathematics during participation in a sequence of three different practice-based activities, collectively referred to as the Online Practice Suite (OPS). We will examine 14 PSTs’ responses to post-activity surveys targeting their understanding of argumentation-focused discussions and emotional experiences, over the course of a single semester.

Author/Presenter

Heather Howell

Dionne Cross Francis

Pavneet Kaur Bharaj

Calli Shekell

Lead Organization(s)
Year
2021
Short Description

The present study focuses on examining transitions in elementary pre-service teachers (PSTs)’ understanding of, and skills in, leading argumentation-focused discussions in mathematics during participation in a sequence of three different practice-based activities, collectively referred to as the Online Practice Suite (OPS).

Pushing the Boundaries: Exploring the Potential of an Online Practice Suite to Support Elementary ScieTeachers in Learning How to Engage Students in Argumentation

Slides from a pre-conference workshop at the 2021 National Association for Research in Science Teaching Annual Meeting, Orlando, FL.

Author/Presenter

Jamie N. Mikeska

Pamela S. Lottero-Perdue

Meredith Park Rogers

Meredith Thompson

Dionne Cross Francis

Calli Shekell

Lead Organization(s)
Year
2021
Short Description

Slides from a pre-conference workshop at the 2021 National Association for Research in Science Teaching Annual Meeting, Orlando, FL.

Using Online Simulations to Promote Elementary Preservice Teachers’ Facilitation of Argumentation-Focused Discussions in Mathematics and Science

In this study, our team developed and is studying the use of an Online Practice Suite (OPS) composed of a coordinated and scaffolded collection of three practice-based online simulations designed to support the development of preservice teachers' (PSTs’) abilities, skills, beliefs, and understanding around one ambitious teaching practice within mathematics and science: facilitating discussions that engage students in argumentation.

Author/Presenter

Jamie N. Mikeska

Dionne Cross Francis

Pamela Lottero-Perdue

Meredith Park Rogers

Calli Shekell

Pavneet Bharaj

Heather Howell

Adam Maltese

Meredith Thompson

Justin Reich

Lead Organization(s)
Year
2021
Short Description

In this study, our team developed and is studying the use of an Online Practice Suite (OPS) composed of a coordinated and scaffolded collection of three practice-based online simulations designed to support the development of preservice teachers' (PSTs’) abilities, skills, beliefs, and understanding around one ambitious teaching practice within mathematics and science: facilitating discussions that engage students in argumentation.

“I Remember How to Do It”: Exploring Upper Elementary Students’ Collaborative Regulation While Pair Programming Using Epistemic Network Analysis

Background and Context
Students’ self-efficacy toward computing affect their participation in related tasks and courses. Self-efficacy is likely influenced by students’ initial experiences and exposure to computer science (CS) activities. Moreover, student interest in a subject likely informs their ability to effectively regulate their learning in that domain. One way to enhance interest in CS is through using collaborative pair programming.

Author/Presenter

Jessica Vandenberg

Collin Lynch

Kristy Elizabeth Boyer

Eric Wiebe

Year
2022
Short Description

Students’ self-efficacy toward computing affect their participation in related tasks and courses. Self-efficacy is likely influenced by students’ initial experiences and exposure to computer science (CS) activities. Moreover, student interest in a subject likely informs their ability to effectively regulate their learning in that domain. One way to enhance interest in CS is through using collaborative pair programming. We wanted to explore upper elementary students’ self-efficacy for and conceptual understanding of CS as manifest in collaborative and regulated discourse during pair programming.

“I Remember How to Do It”: Exploring Upper Elementary Students’ Collaborative Regulation While Pair Programming Using Epistemic Network Analysis

Background and Context
Students’ self-efficacy toward computing affect their participation in related tasks and courses. Self-efficacy is likely influenced by students’ initial experiences and exposure to computer science (CS) activities. Moreover, student interest in a subject likely informs their ability to effectively regulate their learning in that domain. One way to enhance interest in CS is through using collaborative pair programming.

Author/Presenter

Jessica Vandenberg

Collin Lynch

Kristy Elizabeth Boyer

Eric Wiebe

Year
2022
Short Description

Students’ self-efficacy toward computing affect their participation in related tasks and courses. Self-efficacy is likely influenced by students’ initial experiences and exposure to computer science (CS) activities. Moreover, student interest in a subject likely informs their ability to effectively regulate their learning in that domain. One way to enhance interest in CS is through using collaborative pair programming. We wanted to explore upper elementary students’ self-efficacy for and conceptual understanding of CS as manifest in collaborative and regulated discourse during pair programming.

It's Challenging but Doable: Lessons Learned from a Remote Collaborative Coding Camp for Elementary Students

The COVID-19 pandemic shifted many U.S. schools from in-person to remote instruction. While collaborative CS activities had become increasingly common in classrooms prior to the pandemic, the sudden shift to remote learning presented challenges for both teachers and students in implementing and supporting collaborative learning. Though some research on remote collaborative CS learning has been conducted with adult learners, less has been done with younger learners such as elementary school students.

Author/Presenter
Yingbo Ma

Julianna Martinez Ruiz

Timothy D. Brow

Kiana-Alize Diaz

Adam M. Gaweda

Mehmet Celepkolu

Kristy Elizabeth Boyer

Collin F. Lynch

Eric Wiebe

Year
2022
Short Description

This experience report describes lessons learned from a remote after-school camp with 24 elementary school students who participated in a series of individual and paired learning activities over three weeks. The report contributes to the understanding of remote CS learning practices, particularly for elementary school students, and we hope it will provoke methodological advancement in this important area.

It's Challenging but Doable: Lessons Learned from a Remote Collaborative Coding Camp for Elementary Students

The COVID-19 pandemic shifted many U.S. schools from in-person to remote instruction. While collaborative CS activities had become increasingly common in classrooms prior to the pandemic, the sudden shift to remote learning presented challenges for both teachers and students in implementing and supporting collaborative learning. Though some research on remote collaborative CS learning has been conducted with adult learners, less has been done with younger learners such as elementary school students.

Author/Presenter
Yingbo Ma

Julianna Martinez Ruiz

Timothy D. Brow

Kiana-Alize Diaz

Adam M. Gaweda

Mehmet Celepkolu

Kristy Elizabeth Boyer

Collin F. Lynch

Eric Wiebe

Year
2022
Short Description

This experience report describes lessons learned from a remote after-school camp with 24 elementary school students who participated in a series of individual and paired learning activities over three weeks. The report contributes to the understanding of remote CS learning practices, particularly for elementary school students, and we hope it will provoke methodological advancement in this important area.

Examining the Responding Component of Teacher Noticing: A Case of One Teacher’s Pedagogical Responses to Students’ Thinking in Classroom Artifacts

In this study, we investigated how an experienced fourth-grade teacher responded to her students’ thinking as part of her teacher noticing practice in a formative assessment context. Our primary purpose in doing this work was to decompose the responding component of teacher noticing and use our findings to present an emerging framework characterizing the multidimensional nature of this practice. We present two key outcomes based on the findings of this work. First, we show how a formative assessment context situated outside of instruction can engage teachers in practice-based noticing.

Author/Presenter

Melissa Luna

Sarah Selmer

Lead Organization(s)
Year
2021
Short Description

In this study, we investigated how an experienced fourth-grade teacher responded to her students’ thinking as part of her teacher noticing practice in a formative assessment context. Our primary purpose in doing this work was to decompose the responding component of teacher noticing and use our findings to present an emerging framework characterizing the multidimensional nature of this practice.

Digging into Data: Illustrating a Data Investigation Process

Lee, H.S., Mojica, G. M., & Thrasher, E. (2022). Digging into data: Illustrating an investigative process. Statistics Teacher.

Author/Presenter

Hollylynne S. Lee

Gemma F. Mojica

Emily Thrasher

Year
2022
Short Description

In this article, authors described the six-phase data investigation process for analyzing large-scale quantitative and categorical data.