A Model Comparison Approach to Posterior Predictive Model Checks in Bayesian Confirmatory Factor Analysis
Posterior Predictive Model Checking (PPMC) is frequently used for model fit evaluation in Bayesian Confirmatory Factor Analysis (BCFA). In standard PPMC procedures, model misfit is quantified by comparing the location of an ML-based point estimate to the predictive distribution of a statistic. When the point estimate is far from the center posterior predictive distribution, model fit is poor. Not included in this approach, however, is the variability of the Maximum Likelihood (ML)-based point estimates.
Posterior Predictive Model Checking (PPMC) is frequently used for model fit evaluation in Bayesian Confirmatory Factor Analysis (BCFA). In standard PPMC procedures, model misfit is quantified by comparing the location of an ML-based point estimate to the predictive distribution of a statistic. When the point estimate is far from the center posterior predictive distribution, model fit is poor. Not included in this approach, however, is the variability of the Maximum Likelihood (ML)-based point estimates. We propose a new method of PPMC based on comparing posterior predictive distributions of a hypothesized and saturated BCFA model.