Science

SAIL Garbage Unit

School, home, and neighborhoods make large amounts of garbage every day. In answering the driving question of the unit, “What happens to our garbage?”, students investigate a series of subquestions (e.g., “What is that smell?” and “What causes changes in the properties of garbage materials?”) that address a targeted set of physical science and life science performance expectations. Over nine weeks of instruction, students develop a coherent understanding of the structure and properties of matter to make sense of the anchoring phenomenon and to answer the driving question.

Author/Presenter

The SAIL Team

Lead Organization(s)
Year
2019
Short Description

School, home, and neighborhoods make large amounts of garbage every day. In answering the driving question of the unit, “What happens to our garbage?”, students investigate a series of subquestions (e.g., “What is that smell?” and “What causes changes in the properties of garbage materials?”) that address a targeted set of physical science and life science performance expectations. This unit was developed with a specific focus on English learners by using an engaging, local phenomenon and design principles that capitalize on the mutually supportive nature of science and language learning.

Journey to El Yunque Curriculum

The Journey to El Yunque curriculum introduces students to disturbance ecology, with a focus on both ecosystem resilience and ecosystem change. Each page is beautifully illustrated by Puerto Rican artist Robert Casilla to connect students with Puerto Rican culture as well as help generate curiosity and interest as students move through the curriculum. Students use interactive models to explore how limiting factors, such as the availability of food or shelter, impact the population dynamics of different species following a hurricane.

Author/Presenter

The Journey to El Yunque Team

Lead Organization(s)
Year
2016
Short Description

The Journey to El Yunque curriculum introduces students to disturbance ecology, with a focus on both ecosystem resilience and ecosystem change. Each page is beautifully illustrated by Puerto Rican artist Robert Casilla to connect students with Puerto Rican culture as well as help generate curiosity and interest as students move through the curriculum. Students use interactive models to explore how limiting factors, such as the availability of food or shelter, impact the population dynamics of different species following a hurricane. Students engage with interactive models of population dynamics that are based on real-world data gathered by our partners at the Luquillo Long-Term Ecological Research program in Puerto Rico. The data from these models serve as evidence for students’ scientific arguments about the impact of hurricanes on specific species in the rainforest. (Teacher materials can be requested from demo@elyunque.net)

Sensing Science Apps

Sensing Science has created several free educational apps for iPads to build conceptual understanding of matter and its changes in kindergarten students. Related resources and support materials are available.

Author/Presenter

The Sensing Science Team

Lead Organization(s)
Year
2020
Short Description

Sensing Science has created several free educational apps for iPads to build conceptual understanding of matter and its changes in kindergarten students. Related resources and support materials are available.

InquirySpace Investigations

A set of NGSS-aligned investigations for each discipline (physics, chemistry, biology) designed to introduce and scaffold engagement in science practices and build an understanding of the interplay between experimental design, data collection, analysis, and explanation.

Author/Presenter

The InquirySpace Team

Lead Organization(s)
Year
2021
Short Description

A set of NGSS-aligned investigations for each discipline (physics, chemistry, biology) designed to introduce and scaffold engagement in science practices and build an understanding of the interplay between experimental design, data collection, analysis, and explanation. In the process of investigating their world, students generate data using traditional lab tools, sensors, and simulations, then bring their data into our Common Online Data Analysis Platform (CODAP), which was developed specifically to facilitate sensemaking with data.

Connected Biology

Connected Biology provides a sequence of lessons for high school biology that fosters integrated learning of genetics and evolution. This novel curriculum is aligned with Next Generation Science Standards (NGSS) performance expectations and supports students’ development of a model of the relationships between molecules, cells, organisms, and populations. The curriculum package includes online lessons, an interactive Teacher’s Edition, and a real-time Teacher Dashboard. Additional background materials and supplemental resources are also provided.

Author/Presenter

The Connected Biology Team

Year
2018
Short Description

Connected Biology provides a sequence of lessons for high school biology that fosters integrated learning of genetics and evolution. This novel curriculum is aligned with Next Generation Science Standards (NGSS) performance expectations and supports students’ development of a model of the relationships between molecules, cells, organisms, and populations. The curriculum package includes online lessons, an interactive Teacher’s Edition, and a real-time Teacher Dashboard. Additional background materials and supplemental resources are also provided.

Connected Biology

Connected Biology provides a sequence of lessons for high school biology that fosters integrated learning of genetics and evolution. This novel curriculum is aligned with Next Generation Science Standards (NGSS) performance expectations and supports students’ development of a model of the relationships between molecules, cells, organisms, and populations. The curriculum package includes online lessons, an interactive Teacher’s Edition, and a real-time Teacher Dashboard. Additional background materials and supplemental resources are also provided.

Author/Presenter

The Connected Biology Team

Year
2018
Short Description

Connected Biology provides a sequence of lessons for high school biology that fosters integrated learning of genetics and evolution. This novel curriculum is aligned with Next Generation Science Standards (NGSS) performance expectations and supports students’ development of a model of the relationships between molecules, cells, organisms, and populations. The curriculum package includes online lessons, an interactive Teacher’s Edition, and a real-time Teacher Dashboard. Additional background materials and supplemental resources are also provided.

CHANGE Curriculum

CHANGE provides a website, https://climatechange.usf.edu/ which includes nine units from a marine sciences course, complete with lesson plans involving inexpensive, easy to find materials, Powerpoints, downloadable files and an interactive web-based eBook with simulation-based games.

Author/Presenter

The CHANGE Team

Lead Organization(s)
Year
2018
Short Description

Nine units for high school-level Marine Science classes: (1) Ocean Exploration, (2) Marine Geology, (3) Marine Chemistry, (4) Estuaries, (5) Marine Physics, (6) Populations: Producers, (7) Populations: Invertebrates, (8) Populations: Vertebrates and (9) Capstone: Apollo Beach. All of these materials can be potentially repurposed for other high school science courses. The units include lesson plans involving inexpensive, easy to find materials, Powerpoints, downloadable files and an interactive web-based eBook with simulation-based games. Teachers can view the top level, outline of the CHANGE curriculum web-page: https://climatechange.usf.edu/. However, to access the actual materials, they will need to register to get a username, by emailing Dr. Glenn Smith: glenns@usf.edu and metinbesalti@mail.usf.edu

National Science Teachers Association 2022 National NSTA Conference; Houston, TX

Event Date
-

To learn more, visit https://www.nsta.org/houston-national-conference-science-education.

DRK-12 Presentations

  • Building Leadership Capacity to Support Science Implementation in Elementary Grades (Presenters: O’Connor, D. & Hayes, K.)
  • Developing Teacher Noticing Capacity of Sensemaking (Presenters: O’Connor, D., Jackson, C., & Wright, N.)
Discipline/Topic
Event Type