Mathematics

Clarifiable Ambiguity in Classroom Mathematics Discourse

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Author/Presenter

Blake E. Peterson

Keith R. Leatham

Lindsay M. Merrill

Laura R. Van Zoest

Shari L. Stockero

Year
2020
Short Description

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Clarifiable Ambiguity in Classroom Mathematics Discourse

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Author/Presenter

Blake E. Peterson

Keith R. Leatham

Lindsay M. Merrill

Laura R. Van Zoest

Shari L. Stockero

Year
2020
Short Description

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Articulating the Student Mathematics in Student Contributions

We draw on our experiences researching teachers’ use of student thinking to theoretically unpack the work of attending to student contributions in order to articulate the student mathematics (SM) of those contribution.

Author/Presenter

Laura R. Van Zoest

Shari L. Stockero

Keith R. Leatham

Blake E. Peterson

Joshua M. Ruk

Year
2020
Short Description

We draw on our experiences researching teachers’ use of student thinking to theoretically unpack the work of attending to student contributions in order to articulate the student mathematics (SM) of those contribution.

Articulating the Student Mathematics in Student Contributions

We draw on our experiences researching teachers’ use of student thinking to theoretically unpack the work of attending to student contributions in order to articulate the student mathematics (SM) of those contribution.

Author/Presenter

Laura R. Van Zoest

Shari L. Stockero

Keith R. Leatham

Blake E. Peterson

Joshua M. Ruk

Year
2020
Short Description

We draw on our experiences researching teachers’ use of student thinking to theoretically unpack the work of attending to student contributions in order to articulate the student mathematics (SM) of those contribution.

Articulating the Student Mathematics in Student Contributions

We draw on our experiences researching teachers’ use of student thinking to theoretically unpack the work of attending to student contributions in order to articulate the student mathematics (SM) of those contribution.

Author/Presenter

Laura R. Van Zoest

Shari L. Stockero

Keith R. Leatham

Blake E. Peterson

Joshua M. Ruk

Year
2020
Short Description

We draw on our experiences researching teachers’ use of student thinking to theoretically unpack the work of attending to student contributions in order to articulate the student mathematics (SM) of those contribution.

Preparing Paraeducators for the Teacher Pipeline: Building Confidence Through Professional Development in Mathematics

The article describes our project that was designed to provide experiences to support paraeducators' professional growth in a large urban district by building their mathematical knowledge for teaching and leadership. Providing paras with professional learning opportunities can open pathways to teaching positions, giving them the potential to diversify the teaching pool and address teacher shortages.

Author/Presenter

Judy Storeygard

Karen Mutch-Jones

Lead Organization(s)
Year
2020
Short Description

The article describes our project that was designed to provide experiences to support paraeducators' professional growth in a large urban district by building their mathematical knowledge for teaching and leadership. Providing paras with professional learning opportunities can open pathways to teaching positions, giving them the potential to diversify the teaching pool and address teacher shortages.

Gathering Response Process Data for a Problem-Solving Measure through Whole-Class Think Alouds

Response process validity evidence provides a window into a respondent’s cognitive processing. The purpose of this study is to describe a new data collection tool called a whole-class think aloud (WCTA). This work is performed as part of test development for a series of problem-solving measures to be used in elementary and middle grades. Data from third-grade students were collected in a 1–1 think-aloud setting and compared to data from similar students as part of WCTAs. Findings indicated that students performed similarly on the items when the two think-aloud settings were compared.

Author/Presenter

Jonathan David Bostic

Toni A. Sondergeld

Gabriel Matney

Gregory Stone

Tiara Hicks

Lead Organization(s)
Year
2021
Short Description

This is a description of a new methodological tool to gather response process validity evidence. The context is scholarship within mathematics education contexts.

Gathering Response Process Data for a Problem-Solving Measure through Whole-Class Think Alouds

Response process validity evidence provides a window into a respondent’s cognitive processing. The purpose of this study is to describe a new data collection tool called a whole-class think aloud (WCTA). This work is performed as part of test development for a series of problem-solving measures to be used in elementary and middle grades. Data from third-grade students were collected in a 1–1 think-aloud setting and compared to data from similar students as part of WCTAs. Findings indicated that students performed similarly on the items when the two think-aloud settings were compared.

Author/Presenter

Jonathan David Bostic

Toni A. Sondergeld

Gabriel Matney

Gregory Stone

Tiara Hicks

Lead Organization(s)
Year
2021
Short Description

This is a description of a new methodological tool to gather response process validity evidence. The context is scholarship within mathematics education contexts.

“Teaching Them How to Fish”: Learning to Learn and Teach Responsively

The Responsive Math Teaching (RMT) project’s 3-year model for professional development introduces teachers to a new instructional model through a full year of monthly Math Circles, where they experience problem solving and productive struggle from the student perspective while working through challenging open-ended tasks, engaging in mathematical discussions, and reflecting on the process. This paper examines teachers’ views of what they learned from this experience and how it affected both their instructional practices and their visions of mathematics teaching and learning.
Author/Presenter

Caroline B. Ebby

Brittany Hess

Lizzy Pecora

Jennifer Valerio

Lead Organization(s)
Year
2021
Short Description

The Responsive Math Teaching (RMT) project’s 3-year model for professional development introduces teachers to a new instructional model through a full year of monthly Math Circles, where they experience problem solving and productive struggle from the student perspective while working through challenging open-ended tasks, engaging in mathematical discussions, and reflecting on the process. This paper examines teachers’ views of what they learned from this experience and how it affected both their instructional practices and their visions of mathematics teaching and learning.

Computational Participation and the Learner‐Technology Pairing in K‐12 STEM Education

The role of technology in STEM education remains unclear and needs stronger operational definition. In this paper, we explore the theoretical connection between STEM and emergent technologies, with a focus on learner behaviors and the potential of technology-mediated experiences with computational participation (CP) in shaping STEM learning. In particular, by de-emphasizing what technology is used and bringing renewed focus to how the technology is used, we make a case for CP as an epistemological and pedagogical approach that promotes collaborative STEM practices.

Author/Presenter

Ramya Sivaraj

Joshua A. Ellis

Jeanna R. Wieselmann

Gillian H. Roehrig

Year
2020
Short Description

This paper explores the theoretical connection between STEM and emergent technologies, with a focus on learner behaviors and the potential of technology-mediated experiences with computational participation (CP) in shaping STEM learning.