Thursday

Building a Teacher Knowledge Base for the Implementation of High-Quality Instructional Resources through the Collaborative Investigation of Video Cases (Collaborative Research: Murray and Wilson)

Principal Investigator:

Analyzing Instruction in Mathematics using the TRU framework (AIM-TRU) is a research-practice partnership that is investigating the pressing problem of supporting teachers in increasing their capacity to implement high-quality instructional materials in the classroom with fidelity. Drawing upon the design-based research paradigm, the partnership has worked to co-design, investigate, and iteratively form the AIM-TRU Learning Cycle, which gives teachers the opportunity to understand the materials and how they are used in the classroom through a video-based professional learning cycle.

Click image to preview:
Target Audience:

Preparing Next Generation Scientists Through Teacher and Extension Science Partnerships and Schoolyard Citizen Science Investigations in Elementary Schools

Principal Investigator:

Research shows a need for professional development (PD) that builds K-5 teachers' ability to incorporate the Next Generation Science Standards (NGSS) science practices into the classroom and supports their implementation of reform-minded science instruction. The Schoolyard SITES research study and PD program at the University of New Hampshire (UNH) partners elementary teachers with UNH Extension science volunteers to bring locally-relevant citizen science projects to elementary students and to increase teachers’ self-efficacy teaching science.

Click image to preview:
Target Audience:

Measuring Early Mathematical Reasoning Skills: Developing Tests of Numeric Relational Reasoning and Spatial Reasoning

Principal Investigator:

The MMaRS project is designing classroom assessment resources of numeric relational reasoning and spatial reasoning for students in grades K-2. During the pandemic, SMU researchers worked virtually with teachers and K-2 students to develop resources that are responsive to their needs and accurately elicit their reasoning. This poster will highlight the virtual data collection methods and techniques, including think aloud video interviews with students and prototype co-design work sessions with teachers.

Click image to preview:
Target Audience:

Mathematical Learning via Architectural Design and Modeling Using E-Rebuild

Principal Investigator:

This poster presentation will introduce the current study findings governing the design and implementation of E-Rebuild, a 3D architecture and math game that aims to promote versatile representation and epistemic practice of mathematics for students in grades 6th-8th. Utilizing the real-time, evidence-centered in-game learning assessment and a game-level editor, E-Rebuild enables not only problem-based mathematical thinking and learning, but also adaptive learner support during gameplay and participatory design of game-based math problems.

Click image to preview:
Target Audience:

Integrating Science with Mathematics and Engineering: Linking Home and School Learning for All Young Learners

Principal Investigator:

This study investigates the integration of early science with mathematics and engineering and involves co-designing resources with preschool teachers and families from historically underserved communities to provide preschool children equitable STEM learning experiences. The study also explores connections between home and school learning and involves designing resources to support multilingual learners, who represent a large (and growing) proportion of the population served in public preschool programs.

Click image to preview:
Target Audience:

Incorporating Professional Science Writing into High School STEM Research Projects

Principal Investigator:
Description: Reading, writing, revision and even publication are integral to progressing science. Yet, these skills are not emphasized in the typical high school STEM classroom. This project investigates the experiences and outcomes of secondary students who have participated in the peer-review and publication of their STEM research projects. Overall, students report increased understanding of the role of writing and publication within science, and they express higher levels of self-efficacy, confidence and identity in STEM.
Click image to preview:
Target Audience:

Improving the Implementation of Rigorous Instructional Materials in Middle-Grades Mathematics: Developing a System of Practical Measures and Routines (Collaborative Research: Ahn, Cobb, Jackson, and Smith)

Principal Investigator:

This project has developed practical measures, and associated routines and data representations, to support the implementation of instructional improvement strategies (e.g.,coaching) in middle-grades mathematics teaching. We will describe our classroom measures, which assess students' perspectives of key aspects of the classroom learning environment; the contributions they have made to our partner districts’ improvement efforts; and how we have attended to validity in the design and use of practical measures.

Target Audience:

Exploratory Evidence on the Factors that Relate to Elementary School Science Learning Gains Among English Language Learners

Principal Investigator:

This study provides evidence on the confluence of school, classroom, teacher, and student inputs that shape elementary school science learning for English learners. The study explores the relationship between (1) science inputs (time on science, content covered, availability of lab resources, teacher training in science instruction, etc.), and (2) EL-specific inputs (classroom language use, EL instructional models, teacher certification/training, availability of EL support staff, etc.) for a nationally representative set of kindergarten through fifth graders.

Click image to preview:
Target Audience:

Developing Teacher Noticing in Engineering in an Online Professional Development Program

Principal Investigator:

The Teacher Engineering Education Program is designed to support teacher learning in engineering education in an 18-month online asynchronous program. In this project, we collected data from two cohorts of elementary teachers (N=26) including multiple interviews throughout the program, teachers’ video recordings of their classroom teaching, and their coursework in the four required courses. This poster summarizes our central findings on teacher learning in the program, looking at teachers’ noticing and pedagogical sensemaking in engineering.

Click image to preview:

Developing Preservice Elementary Teachers' Ability to Facilitate Goal-Oriented Discussions in Science and Mathematics via the Use of Simulated Classroom Interactions

Principal Investigator:

In this project, we developed, piloted, and studied the use of a set of performance-based tasks delivered within a simulated classroom environment in order to improve preservice elementary teachers' ability to facilitate argumentation-focused discussions in mathematics and science. We conceptualized these simulated discussions as formative assessment opportunities, and studied how teacher educators made use of them within methods courses to support preservice teachers' learning. We also examined evidence of preservice teacher learning via pre/post measures.

Click image to preview:
Target Audience: