This project develops an instrument to measure the content knowledge that teachers need to teach about energy in high school classroom instruction that focuses on mechanical energy. The project uses a framework that includes tasks based on instructional practices in the classroom that can identify the extent to which the teacher understands both the disciplinary knowledge and the appropriate teaching processes that support student learning.
Projects
This project will develop a new assessment for children ages 3-7 to provide teachers with diagnostic information on a child's development of mathematics facility on ten domains such as counting, sequencing, adding/subtracting, and measurement. The Comprehensive Research-based Mathematics Ability (CREMAT) is being developed using innovative psychometric models to reveal information about children on specific attributes for each of the 10 domains.
The RISE project is creating curriculum resources for dual language learners (DLLs) in science, technology and engineering (STE). Participants include teachers in pre-K programs in the Boston area selected to target Hispanic and Chinese students and their families. The curriculum will be based on the Massachusetts framework, one of only a few states with pre-K standards. The evaluation will monitor both the progress of the research and development and the dissemination to the target audiences.
This collaborative project is developing an online, professional teaching community that addresses issues of assessment in mathematics classes. The developers are building on the success of the NSF-supported Math Forum's Problem of the Week program to create a community that works to increase students' mathematics learning by helping teachers stimulate student thinking, assess that thinking, and provide useful feedback to students.
In this project, investigators are developing and testing a learning progression for the study of chemistry. Likely pathways are investigated for how grade 8-13 student's implicit assumptions develop on five major threads of chemical design. A focus on chemical design facilitates the coherent integration of scientific and engineering practices, cross-cutting concepts, and disciplinary core ideas. This approach should make chemistry more engaging to a greater variety of students.
This collaborative project is developing instruments to assess secondary teachers' Mathematical Habits of Mind (MHoM). These habits bring parsimony, focus, and coherence to teachers' mathematical thinking and, in turn, to their work with students. This work fits into a larger research agenda with the ultimate goal of understanding the connections between secondary teachers' mathematical knowledge for teaching and secondary students' mathematical understanding and achievement.
This project is developing principles for supporting middle school mathematics teachers' capacity to use curriculum resources to design instruction that addresses the Common Core State Standards for Mathematics. These principles are intended for: (1) curriculum developers; (2) professional development designers, to help teachers better utilize curriculum materials with respect to the CCSSM; and (3) teachers, so that they can use curriculum resources to design instruction that addresses the CCSSM.
This collaborative project is developing instruments to assess secondary teachers' Mathematical Habits of Mind (MHoM). These habits bring parsimony, focus, and coherence to teachers' mathematical thinking and, in turn, to their work with students. This work fits into a larger research agenda with the ultimate goal of understanding the connections between secondary teachers' mathematical knowledge for teaching and secondary students' mathematical understanding and achievement.
This project is studying three models of professional development (PD) to test the efficacy of a practicum for grade 3-5 in-service teachers organized in three cohorts of 25. There will be 75 teachers and their students directly impacted by the project. Additional impacts of the project are research results and professional development materials, including a PD implementation guide and instructional videos.
This collaborative project is developing instruments to assess secondary teachers' Mathematical Habits of Mind (MHoM). These habits bring parsimony, focus, and coherence to teachers' mathematical thinking and, in turn, to their work with students. This work fits into a larger research agenda with the ultimate goal of understanding the connections between secondary teachers' mathematical knowledge for teaching and secondary students' mathematical understanding and achievement.
This project is studying measurement practices from pre-K to Grade 8, as a coordination of the STEM disciplines of mathematics and science. This research project tests, revises and extends learning trajectories for children's knowledge of geometric measurement across a ten-year span of human development. The goal will be to validate all components of each learning trajectory, goal, developmental progression, and instruction tasks, as well as revising each LT to reflect the outcomes of the experiments.
The new ViSTA Plus study explores implementation of a program for pre-service/beginning teachers that is fully centered on learning from an analysis-of-practice perspective, addressing the central research question of "What is the value of a videocase-based, analysis-of-practice approach to elementary science teacher preparation?" The project is producing science-specific, analysis-of-practice materials to support the professional development of teacher educators and professional development leaders using the ViSTA Plus program at universities and in district-based induction programs.
In this project, investigators will convene a group of 15 African American science educators, scientists, and doctoral student scholars and assign them to small work groups to design and conduct multi-site micro-research studies on learning activities that promote science learning and teaching. Work groups will investigate different learning and teaching approaches used in K-12 rural and urban school settings to identify effects on student science learning using quantitative, qualitative, or mixed design studies.
This project is studying three models of professional development (PD) to test the efficacy of a practicum for grade 3-5 in-service teachers organized in three cohorts of 25. There will be 75 teachers and their students directly impacted by the project. Additional impacts of the project are research results and professional development materials, including a PD implementation guide and instructional videos.
This research study expands on the characteristics of mathematical discourse and examines and specifies relationships between descriptive elements across multiple content foci in mathematics. The micro-genetic study is based on examination of video data from multiple routine classroom settings with teachers who demonstrate varying levels of discourse across three curricular topics in mathematics. The resulting framework and redesigned teacher education courses will provide models on which other teacher education programs might build.
The project at Spelman College includes activities that develop computational thinking and encourage middle school, African-American girls to consider careers in computer science. Over a three-year period, the girls attend summer camp sessions of two weeks where they learn to design interactive games. Experts in Computational Algorithmic Thinking as well as undergraduate, computer science majors at Spelman College guide the middle-school students in their design of games and exploration of related STEM careers.
This 3-year project seeks to develop and test curricular resources built around handheld mobile technology to study how these materials foster urban middle school student engagement with and learning of local biodiversity and the patterns of evolution.
This project offers a two-year professional development model to support a cohort of 16 middle school science teachers of underrepresented students as the teachers gain computational thinking (CT) competencies and design and teach CT-integrated classroom science lessons that will provide students with CT learning experiences. The project will contribute to the understanding of what it takes to empower middle school science teachers as designers of CT learning opportunities for students from underrepresented groups.
Research has shown that engaging students, including students from underrepresented groups, in appropriately structured reasoning activities, including argumentation, may lead to enhanced learning. This project will provide information about how teachers learn to support collective argumentation and will allow for the development of professional development materials for prospective and practicing teachers that will enhance their support for productive collective argumentation.
The project will examine how teachers reason about variation subsequent to focused instruction and contribute knowledge to in-service middle and secondary mathematics teacher education by targeting characteristics of professional development that might support teachers' reasoning about variation in increasingly sophisticated ways. The project will produce a coherent collection of shareable instructional materials for use in introductory statistics education and teacher education in statistics.
This project provides support for the U.S. National Commission on Mathematics Instruction, a primary means for ensuring U.S. participation in mathematics education at the international level. The project will facilitate interaction with mathematicians and mathematics educators from around the world as issues about instructional practices are addressed. The participation of representatives of USNC/MI on the international stage opens venues for collaborative research and opportunities to learn about successful practices from other countries.
This is a planning effort to explore future directions and innovations related to educational design in science, technology, engineering, and mathematics education in partnership with the International Society for Design and Development in Education. The planning activity will engage a core group of ISDDE principals in the articulation and examination of design processes for the Transforming STEM Learning program at NSF with a goal of developing an agenda for further discussion and research conceptualization.
Developers and researchers from the Consortium for Mathematics and Its Applications (COMAP) and Teachers College are developing a Mathematical Modeling Handbook to assist high school mathematics teachers in integrating modeling into their curricula. The development team is also investigating how the lessons are used and working with the National Council of Teachers of Mathematics, the National Council of Supervisors of Mathematics, and the Association of State Supervisors to ensure a broad dissemination.
This project is researching the efficacy of a learning and assessment system that emphasizes students' attaining proficiency or better on a limited set of high value learning objectives in Algebra.
This award is for the funding of a regional conference to study the future of STEM education, the impact of underrepresented and disadvantaged groups with regards to STEM, and STEM job growth and workforce development in a regional, as opposed to a national, context.