This project is studying measurement practices from pre-K to Grade 8, as a coordination of the STEM disciplines of mathematics and science. This research project tests, revises and extends learning trajectories for children's knowledge of geometric measurement across a ten-year span of human development. The goal will be to validate all components of each learning trajectory, goal, developmental progression, and instruction tasks, as well as revising each LT to reflect the outcomes of the experiments.
Learning Trajectories to Support the Growth of Measurement Knowledge: Pre-K Through Middle School
This project is studying measurement practices from pre-K to Grade 8, as a coordination of the STEM disciplines of mathematics and science. This four-year, mixed methods research project tests, revises and extends learning trajectories (LTs) for children's knowledge of geometric measurement across a ten-year span of human development. Specifically, research teams from Illinois State University and the University at Denver are working with children in urban and suburban schools to (1) validate and extend prior findings from previous NSF-funded research developing measurement learning trajectories with children in pre-K to Grade 5, and (2) generate and extend portions of trajectories for geometric measurement for Grades 6-8.
The project employs a form of microgenetic studies with 24-50 children per grade from pre-K through Grade 5 representing a stratified random sample from a specific set of suburban schools. These studies will test the validity, replicability and generalizability of the LTs for length, area, and volume. The goal will be to validate all components of each learning trajectory, goal, developmental progression, and instruction tasks, as well as revising each LT to reflect the outcomes of the experiments. Analysis of variance measures with pre/post assessments in an experimental/control design will complement the repeated sessions method of microgenetic analysis.
To explore and extend LTs for children in Grade 6-8, the project employs teaching experiments. This design is used to generate and extend portions of trajectories for geometric measurement, and to explore critical aspects of measurement in clinical and classroom contexts. This work is coordinated with the teaching and learning standards issued by the Council of Chief State School Officials/National Governors Association, the National Council of Teachers of Mathematics, the National Science Teachers Association, the American Association of the Advancement of Science, and the National Research Council with cognitive and mathematics/science education literature. Emerging constructs for the hypothetical LT levels in relation to relevant frameworks generated by other researchers and those implied by standards documents to establish ongoing sequences of the experimental interventions for grades 6-8 are being compared, critiqued and evaluated.
This project provides a longitudinal account of pre-K to Grade 8 children's ways of thinking and understanding mathematical and scientific concepts of measurement based upon empirical analysis. The resulting learning trajectory will represent state of the art integrated, interdisciplinary, theoretically- and empirically-based descriptions of increasingly sophisticated and complex levels of thinking in the domain of measurement (albeit, more tentative for Grades 6-8). This account will be used to verify and/or modify existing accounts of children's development of reasoning from short-term analyses of learning or cross-sectional studies. There are not yet integrative longitudinal studies describing this cognitive domain for area or volume measurement. This trajectory-based analysis of development and instruction supports the design and testing of integrative, formative assessment of individuals and groups of children. Such learning trajectories will be useful in implementing the standard-focused curriculum described in the Common Core State Standards Mathematics and in supporting the multiple large assessment projects currently underway
Project Videos
2016 STEM for All Video Showcase
Title: Children’s Measurement, Children’s Mathematics
Presenter(s): Jeffrey Barrett, Douglas Clements, Craig Cullen, Laura Dietert, Julie Sarama, & Douglas Van Dine |