Other

Why Formative Assessment?

Author/Presenter

Kathy Paget

Year
2013
Short Description

In this short text, the power of formative assessment as a teaching tool is detailed, and examples of opportunities for formative assessment within Foundation Science Biology proposed, for Learning Experiences (LE) 2, 3 and 4.

Modifying Curriculum “Mindfully”

This short text provides a description of different ways in which the curriculum can be modified to meet the needs of teachers and students while still retaining the intentions of the developers. Examples of possible modifications are provided.

Author/Presenter

eTG Project Team

Year
2013
Short Description

This short text provides a description of different ways in which the curriculum can be modified to meet the needs of teachers and students while still retaining the intentions of the developers. Examples of possible modifications are provided.

Content Sequencing in Foundation Science

Author/Presenter

eTG Project Team

Year
2013
Short Description

This short text explains the reasoning for the sequencing of the content in Foundation Science: Biology. Specifically, it describes the content sequence for the full year curriculum, for the Genetics Unit, for a Learning Experience, and provides examples.

Interactional Processes for Stabilizing Conceptual Coherences in Physics

Author/Presenter

Rachel E. Scherr

Lead Organization(s)
Year
2012
Short Description

Research in student knowledge and learning of science has typically focused on explaining conceptual change. Recent research, however, documents the great degree to which student thinking is dynamic and context-sensitive, implicitly calling for explanations not only of change but also of stability. In other words, when a pattern of student reasoning is sustained in specific moments and settings, what mechanisms contribute to sustaining it? We characterize student understanding and behavior in terms of multiple local coherences in that they may be variable yet still exhibit local stabilities. We attribute stability in local conceptual coherences to real-time activities that sustain these coherences. For example, particular conceptual understandings may be stabilized by the linguistic features of a worksheet question or by feedback from the students’ spatial arrangement and orientation. We document a group of university students who engage in multiple local conceptual coherences while thinking about motion during a collaborative learning activity. As the students shift their thinking several times, we describe mechanisms that may contribute to local stability of their reasoning and behavior.

Representing Energy. II. Energy tracking representations

Author/Presenter

Rachel E. Scherr

Hunter G. Close

Eleanor W. Close

Stamatis Vokos

Year
2012
Short Description

The Energy Project at Seattle Pacific University has developed representations that embody the substance metaphor and support learners in conserving and tracking energy as it flows from object to object and changes form. Such representations enable detailed modeling of energy dynamics in complex physical processes. We assess student learning by means of representations that learners invent to explain energy dynamics in specific real-world scenarios. Refined versions of these learner-generated representations have proven valuable for our own teaching, physics understanding, and research.

Representing Energy. I. Representing a Substance Ontology for Energy

Author/Presenter

Rachel E. Scherr

Hunter G. Close

Sarah B. McKagan

Stamatis Vokos

Year
2012
Short Description

The nature of energy is not typically an explicit topic of physics instruction. Nonetheless, verbal and graphical representations of energy articulate models in which energy is conceptualized as a quasimaterial substance, a stimulus, or a vertical location. We argue that a substance ontology for energy is particularly productive in developing understanding of energy transfers and transformations. We analyze classic representations of energy—bar charts, pie charts, and others—to determine the energy ontologies that are implicit in those representations, and thus their affordances for energy learning. We find that while existing representations partially support a substance ontology for energy and thus the learning goal of energy conservation, they have limited utility for tracking the flow of energy among objects.

Generating Cognitive Dissonance in Student Interviews through Multiple Representations

This study explores what students understand about enzyme–substrate interactions, using multiple representations of the phenomenon. In this paper we describe our use of the 3 Phase-Single Interview Technique with multiple representations to generate cognitive dissonance within students in order to uncover misconceptions of enzyme–substrate interactions. Findings from 25 student interviews are interpreted through the lens of multiple theoretical frameworks, including personal constructivism and coherence formation.

Author/Presenter

Kimberly J. Linenberger

Stacey Lowery Bretz

Lead Organization(s)
Year
2012
Short Description

This study explores what students understand about enzyme–substrate interactions, using multiple representations of the phenomenon. In this paper we describe our use of the 3 Phase-Single Interview Technique with multiple representations to generate cognitive dissonance within students in order to uncover misconceptions of enzyme–substrate interactions. Findings from 25 student interviews are interpreted through the lens of multiple theoretical frameworks, including personal constructivism and coherence formation. The importance of classroom teachers engaging students in dialogue about representations is discussed.

A Symmetry POGIL Activity for Inorganic Chemistry

Author/Presenter

Cynthia J. Luxford

Michael W. Crowder

Stacey Lowery Bretz

Lead Organization(s)
Year
2012
Short Description

The goal of this project was to create an inquiry activity to teach symmetry elements and symmetry operations in an inorganic chemistry course. Many students experience difficulty when building and mentally manipulating three-dimensional mental models from two-dimensional images, causing difficulty when learning symmetry. Process-oriented, guided-inquiry learning (POGIL) was used to structure the activity using a learning cycle paradigm consistent with research on how students learn as described by Novak’s human constructivism theory. The activity familiarized students with symmetry terms as students actively engaged in finding symmetry operations in a variety of molecules. The symmetry activity was classroom tested and student and POGIL expert feedback were used to improve the activity.

Resource(s)

A Novel Technology to Investigate Students’ Understandings of Enzyme Representations

Author/Presenter

Kimberly J. Linenberger

Stacey Lowery Bretz

Lead Organization(s)
Year
2012
Short Description

Digital pen-and-paper technology, although marketed commercially as a bridge between old and new notetaking capabilities, synchronizes the collection of both written and audio data. This manuscript describes how this technology was used to improve data collection in research regarding students’ learning, specifically their understanding of enzyme-substrate interactions as depicted in textbook representations. Students were
provided this technology during individual interviews and were permitted to annotate multiple representations of enzymes and substrates, as well as to generate their own representations. The ability to digitally revisit the sequential student drawings was
valuable in analysis of the research findings. Innovative and novel uses for this technology are discussed for both discipline-based education research and classroom practice.