Elementary

Improving Integrated STEM Education: The Design and Development of a K-12 STEM Observation Protocol (STEM-OP) (RTP)

Integrated approaches to teaching science, technology, engineering, and mathematics (commonly referred to as STEM education) in K-12 classrooms have resulted in a growing number of teachers incorporating engineering in their science classrooms. Such changes are a result of shifts in science standards to include engineering as evidenced by the Next Generation Science Standards. To date, 20 states and the District of Columbia have adopted the NGSS and another 24 have adopted standards based on the Framework for K-12 Science Education.

Author/Presenter

Emily Anna Dare

Benny Mart Reblando Hiwatig

Khomson Keratithamkul

Joshua Alexander Ellis

Gillian Roehrig

Elizabeth A. Ring-Whalen

Mark Rouleau

Farah Faruqi

Corbin Rice

Preethi Titu

Feng Li

Jeanna R. Wieselmann

Elizabeth A Crotty

Year
2021
Short Description

The work presented here describes in detail the development of an integrated STEM observation instrument - the STEM Observation Protocol (STEM-OP) - that can be used for both research and practice. Over a period of approximately 18-months, a team of STEM educators and educational researchers developed a 10-item integrated STEM observation instrument for use in K-12 science and engineering classrooms. The process of developing the STEM-OP began with establishing a conceptual framework, drawing on the integrated STEM research literature, national standards documents, and frameworks for both K-12 engineering education and integrated STEM education.

Eliciting and Refining Conceptions of STEM Education: A Series of Activities for Professional Development

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Author/Presenter

Emily A. Dare

Elizabeth A. Ring-Whalen

Year
2021
Short Description

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Eliciting and Refining Conceptions of STEM Education: A Series of Activities for Professional Development

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Author/Presenter

Emily A. Dare

Elizabeth A. Ring-Whalen

Year
2021
Short Description

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Eliciting and Refining Conceptions of STEM Education: A Series of Activities for Professional Development

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Author/Presenter

Emily A. Dare

Elizabeth A. Ring-Whalen

Year
2021
Short Description

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Beyond Content: The Role of STEM Disciplines, Real-World Problems, 21st Century Skills, and STEM Careers within Science Teachers’ Conceptions of Integrated STEM Education

Understanding teachers’ conceptions surrounding integrated STEM education is vital to the successful implementation of integrated STEM curricula in K-12 classrooms. Of particular interest is understanding how teachers conceptualize the role of the STEM disciplines within their integrated STEM teaching. Further, despite knowing that content-agnostic characteristics of integrated STEM education are important, little is known about how teachers conceptualize the real-world problems, 21st century skills, and the promotion of STEM careers in their integrated STEM instruction.

Author/Presenter

Khomson Keratithamkul

Benny Mart Hiwatig

Feng Li

Year
2021
Short Description

This study used an exploratory case study design to investigate conceptions of 19 K-12 science teachers after participating in an integrated STEM-focused professional development and implementing integrated STEM lessons into their classrooms.

Beyond Content: The Role of STEM Disciplines, Real-World Problems, 21st Century Skills, and STEM Careers within Science Teachers’ Conceptions of Integrated STEM Education

Understanding teachers’ conceptions surrounding integrated STEM education is vital to the successful implementation of integrated STEM curricula in K-12 classrooms. Of particular interest is understanding how teachers conceptualize the role of the STEM disciplines within their integrated STEM teaching. Further, despite knowing that content-agnostic characteristics of integrated STEM education are important, little is known about how teachers conceptualize the real-world problems, 21st century skills, and the promotion of STEM careers in their integrated STEM instruction.

Author/Presenter

Khomson Keratithamkul

Benny Mart Hiwatig

Feng Li

Year
2021
Short Description

This study used an exploratory case study design to investigate conceptions of 19 K-12 science teachers after participating in an integrated STEM-focused professional development and implementing integrated STEM lessons into their classrooms.

Beyond Content: The Role of STEM Disciplines, Real-World Problems, 21st Century Skills, and STEM Careers within Science Teachers’ Conceptions of Integrated STEM Education

Understanding teachers’ conceptions surrounding integrated STEM education is vital to the successful implementation of integrated STEM curricula in K-12 classrooms. Of particular interest is understanding how teachers conceptualize the role of the STEM disciplines within their integrated STEM teaching. Further, despite knowing that content-agnostic characteristics of integrated STEM education are important, little is known about how teachers conceptualize the real-world problems, 21st century skills, and the promotion of STEM careers in their integrated STEM instruction.

Author/Presenter

Khomson Keratithamkul

Benny Mart Hiwatig

Feng Li

Year
2021
Short Description

This study used an exploratory case study design to investigate conceptions of 19 K-12 science teachers after participating in an integrated STEM-focused professional development and implementing integrated STEM lessons into their classrooms.

Empirical Recovery of Learning Progressions Through the Lens of Educators

Learning progressions represent the relationship between concepts within a domain and how students develop increasingly sophisticated thinking therein. Typical evidence sources used to validate theorized learning progressions are also used to validate the use and interpretation of assessments, such as student cognitive interviews and psychometric analyses of item responses on assessments (Alonzo, 2018; Duschl et al., 2011).

Author/Presenter

Leanne R. Ketterlin-Geller

Yetunde Zannou

Anthony Sparks

Lindsey Perry

Year
2020
Short Description

In this manuscript, we propose that educators’ perspectives may serve as an independent source of evidence that can be integrated with traditional evidence sources (e.g., cognitive interviews with students, psychometric data). This manuscript describes two studies that used surveys to draw on educator knowledge of students to identify upper and lower bounds of a learning progression (MMaRS study) and to understand the order of intermediary phases of learning (ESTAR study).

PST Learning to Facilitate Argumentation Via Simulation: Exploring the Role of Understanding and Emotion

The present study focuses on examining transitions in elementary pre-service teachers (PSTs)’ understanding of, and skills in, leading argumentation-focused discussions in mathematics during participation in a sequence of three different practice-based activities, collectively referred to as the Online Practice Suite (OPS). We will examine 14 PSTs’ responses to post-activity surveys targeting their understanding of argumentation-focused discussions and emotional experiences, over the course of a single semester.

Author/Presenter

Heather Howell

Dionne Cross Francis

Pavneet Kaur Bharaj

Calli Shekell

Lead Organization(s)
Year
2021
Short Description

The present study focuses on examining transitions in elementary pre-service teachers (PSTs)’ understanding of, and skills in, leading argumentation-focused discussions in mathematics during participation in a sequence of three different practice-based activities, collectively referred to as the Online Practice Suite (OPS).

Pushing the Boundaries: Exploring the Potential of an Online Practice Suite to Support Elementary ScieTeachers in Learning How to Engage Students in Argumentation

Slides from a pre-conference workshop at the 2021 National Association for Research in Science Teaching Annual Meeting, Orlando, FL.

Author/Presenter

Jamie N. Mikeska

Pamela S. Lottero-Perdue

Meredith Park Rogers

Meredith Thompson

Dionne Cross Francis

Calli Shekell

Lead Organization(s)
Year
2021
Short Description

Slides from a pre-conference workshop at the 2021 National Association for Research in Science Teaching Annual Meeting, Orlando, FL.