Pedagogy

Secondary Chemistry Teacher Learning: Precursors for and Mechanisms of Pedagogical Conceptual Change

Despite years of research and practice inspired by chemistry education research, a recent report shows that US secondary instruction is not aligned with current national reform-based efforts. One means to mitigate this discrepancy is focusing on pedagogical conceptual change, its precursors (higher self-efficacy and pedagogical discontentment), and the subtleties of its mechanisms (assimilation and accommodation). In this study, we investigate the final reflections of participants (N = 35) who completed our professional development program known as the VisChem Institute (VCI).

Author/Presenter

Lead Organization(s)
Year
2023
Short Description

Despite years of research and practice inspired by chemistry education research, a recent report shows that US secondary instruction is not aligned with current national reform-based efforts. One means to mitigate this discrepancy is focusing on pedagogical conceptual change, its precursors (higher self-efficacy and pedagogical discontentment), and the subtleties of its mechanisms (assimilation and accommodation). In this study, we investigate the final reflections of participants (N = 35) who completed our professional development program known as the VisChem Institute (VCI).

Promoting Meaningful Conversations Among Prospective Mathematics Teachers

Recent circumstances due to the COVID-19 pandemic and restrictions on entering public schools have created barriers for prospective teachers (PT) to gain valuable exposure to real classrooms. As a result, we have transitioned some teacher preparation from in person experiences to video case study analysis. Our research seeks to determine how this transition can foster development of critical teaching skills by infusing a model of powerful teaching with video of real classrooms.

Author/Presenter

Victoria Bonaccorso

Joseph DiNapoli

Eileen Murray

Lead Organization(s)
Year
2022
Short Description

Recent circumstances due to the COVID-19 pandemic and restrictions on entering public schools have created barriers for prospective teachers (PT) to gain valuable exposure to real classrooms. As a result, we have transitioned some teacher preparation from in person experiences to video case study analysis. Our research seeks to determine how this transition can foster development of critical teaching skills by infusing a model of powerful teaching with video of real classrooms.

Investigating the Presence of Mathematics and the Levels of Cognitively Demanding Mathematical Tasks in Integrated STEM Units

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons.

Author/Presenter

Elizabeth N. Forde

Latanya Robinson

Joshua A. Ellis

Emily A. Dare

Year
2023
Short Description

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons. In order to seek insight pertaining to this gap in the literature, we sought to better understand how science teachers use mathematics within K-12 integrated STEM instruction.

Investigating the Presence of Mathematics and the Levels of Cognitively Demanding Mathematical Tasks in Integrated STEM Units

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons.

Author/Presenter

Elizabeth N. Forde

Latanya Robinson

Joshua A. Ellis

Emily A. Dare

Year
2023
Short Description

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons. In order to seek insight pertaining to this gap in the literature, we sought to better understand how science teachers use mathematics within K-12 integrated STEM instruction.

Investigating the Presence of Mathematics and the Levels of Cognitively Demanding Mathematical Tasks in Integrated STEM Units

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons.

Author/Presenter

Elizabeth N. Forde

Latanya Robinson

Joshua A. Ellis

Emily A. Dare

Year
2023
Short Description

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons. In order to seek insight pertaining to this gap in the literature, we sought to better understand how science teachers use mathematics within K-12 integrated STEM instruction.

Uncovering Core Dimensions of K-12 Integrated STEM

To address the lack of a classroom observation protocol aligned with integrated STEM, the author team developed one to measure the degree of integrated STEM instruction implemented in K-12 science and engineering classrooms. This study demonstrates how our instrument can be used to uncover the dimensions of integrated STEM instruction practiced in K-12 classrooms and to determine which protocol items are associated with each of these dimensions.

Author/Presenter

Year
2022
Short Description

To address the lack of a classroom observation protocol aligned with integrated STEM, the author team developed one to measure the degree of integrated STEM instruction implemented in K-12 science and engineering classrooms. This study demonstrates how our instrument can be used to uncover the dimensions of integrated STEM instruction practiced in K-12 classrooms and to determine which protocol items are associated with each of these dimensions.

Uncovering Core Dimensions of K-12 Integrated STEM

To address the lack of a classroom observation protocol aligned with integrated STEM, the author team developed one to measure the degree of integrated STEM instruction implemented in K-12 science and engineering classrooms. This study demonstrates how our instrument can be used to uncover the dimensions of integrated STEM instruction practiced in K-12 classrooms and to determine which protocol items are associated with each of these dimensions.

Author/Presenter

Year
2022
Short Description

To address the lack of a classroom observation protocol aligned with integrated STEM, the author team developed one to measure the degree of integrated STEM instruction implemented in K-12 science and engineering classrooms. This study demonstrates how our instrument can be used to uncover the dimensions of integrated STEM instruction practiced in K-12 classrooms and to determine which protocol items are associated with each of these dimensions.

Uncovering Core Dimensions of K-12 Integrated STEM

To address the lack of a classroom observation protocol aligned with integrated STEM, the author team developed one to measure the degree of integrated STEM instruction implemented in K-12 science and engineering classrooms. This study demonstrates how our instrument can be used to uncover the dimensions of integrated STEM instruction practiced in K-12 classrooms and to determine which protocol items are associated with each of these dimensions.

Author/Presenter

Year
2022
Short Description

To address the lack of a classroom observation protocol aligned with integrated STEM, the author team developed one to measure the degree of integrated STEM instruction implemented in K-12 science and engineering classrooms. This study demonstrates how our instrument can be used to uncover the dimensions of integrated STEM instruction practiced in K-12 classrooms and to determine which protocol items are associated with each of these dimensions.

Mathematics and Science Teacher Educators' Use of Representations of Practice: A Mixed Methods Study

This study sought to explore math and science teacher educators' use of various media to represent practice within methods courses. There is little understanding of why certain media is used over other representations and the rationale for these choices. Specifically, the study focused on the prevalence and familiarity of teacher educators with comics and animations, standard videos, and 360 videos. This mixed methods study utilized a survey and interviews to ascertain math and science teacher educators' level of familiarity and perceived usefulness of representations of practice.

Author/Presenter

Christine K. Austin

Karl W. Kosko

Jennifer L. Heisler

Lead Organization(s)
Year
2023
Short Description

This study sought to explore math and science teacher educators' use of various media to represent practice within methods courses. There is little understanding of why certain media is used over other representations and the rationale for these choices. Specifically, the study focused on the prevalence and familiarity of teacher educators with comics and animations, standard videos, and 360 videos. This mixed methods study utilized a survey and interviews to ascertain math and science teacher educators' level of familiarity and perceived usefulness of representations of practice.

Documenting Two Emerging Sociomathematical Norms for Examining Functions in Mathematics Teachers’ Online Asynchronous Discussions

This study investigated novice mathematics teachers participating in an online teacher education course focused on covariational reasoning and understanding the behavior of functions. The analysis centered on documenting the emergence of participants’ sociomathematical norms for engaging in online asynchronous discussions. In this paper, we characterized participants’ initial mathematical discourse and documented two emergent sociomathematical norms, namely explaining why and emergent shape discourse.

Author/Presenter

Anthony Matranga

Jason Silverman

Year
2022
Short Description

This study investigated novice mathematics teachers participating in an online teacher education course focused on covariational reasoning and understanding the behavior of functions. The analysis centered on documenting the emergence of participants’ sociomathematical norms for engaging in online asynchronous discussions.