Michael Haney

University of California, Irvine (UC Irvine)
10/01/2010

This project examines the first-year implementation of a program that will provide low-cost netbook computers and specialized software to fifth and sixth grade students in four schools in Southern California. The PIs collect baseline and early implementation data to determine effects of the intervention on students' academic achievement in science, academic writing in science, and interest in further STEM study.

Tufts University
09/01/2011

This project designs, constructs, and field-tests a web-based, online collaborative environment for supporting the teaching and learning of inquiry-based high school physics. Based on an interactive digital workbook environment, the team is customizing the platform to include scaffolds and other supports for learning physics, fostering interaction and collaboration within the classroom, and facilitating a design-based approach to scientific experiments.

University of Alaska Fairbanks (UAF)
07/01/2009

Investigations in Cyber-enabled Education (ICE) strives to provide a professional development design framework for enhancing teacher ability to provide science, technology, and math (STM) instruction for secondary students. Exploratory research will clarify ICE framework constructs and gather empirical evidence to form the basis of anticipated further research into the question: Under what circumstances can cyber-enabled collaboration between STM scientists and educators enhance teacher ability to provide STM education?

TERC, Inc.
07/01/2011

This project designs, develops and tests a digital gaming environment for high school students that fosters and measures science learning within alternate reality games about saving Earth's ecosystems. Players work together to solve scientific challenges using a broad range of tools including a centralized web-based gaming site and social networking tools, along with handheld smart-phones, and an avatar-based massively multiplayer online environment. The game requires players to contribute to a scientific knowledge building community.

Concord Consortium
01/01/2008

The project makes use of technology to create timely, valid, and actionable reports to teachers by analyzing assessments and logs of student actions generated in the course of using computer-based curriculum materials. The reports allow teachers to make data-based decisions about alternative teaching strategies. The technology supports student collaborations and the assignment of different learning activities to groups, an essential function needed for universal design for learning (UDL).

North Carolina State University (NCSU)
01/01/2008

This project enhances elementary students' engagement in and learning of science through visual communication skills using student-generated graphics in science notebooks. The products include two professional development modules for each grade level 2–5 that explicitly teach specific forms of graphical representation used in science, how these representations complement written and numeric information, and how teachers can promote the thoughtful reflection and discussion of these representations in small-group and whole-class settings.

Tufts University
09/01/2011

The project investigates the use of robotics into early childhood education. It address two objectives: to develop and evaluate a low-cost, developmentally appropriate robotic construction kit specifically designed for early childhood education (PreK-2) and to pilot a robotics-based professional development model for early childhood educators to teach engineering and technology.

TERC, Inc.
08/15/2005

This study investigates the impact of the wireless environment on high school science using a purposeful sampling of schools with high implementers. Five schools will be examined and extensive data in multiple forms will be collected on each. The project uses in-depth case studies to examine context factors and critical interactions that may influence science instructional practice in wireless high school science classrooms. The study will result in an evidence-based and theoretically-grounded professional development model.

Vanderbilt University
09/01/2008

This project is focusing on the redesign of popular commercial video games to support students’ understanding of Newtonian mechanics. In support of this goal, SURGE develops and implements design principles for game-based learning environments, integrating research on conceptual change, cognitive processing-based design, and socio-cognitive scripting. These enhanced games bridge the gap between student learning in non-formal game environments and the formalized knowledge structures learned in school by leveraging and integrating the strengths of each.

Massachusetts Institute of Technology (MIT)
08/15/2010

This project is designing, developing, and studying an innovative model for professional development (PD) of teachers who use the Scratch computer programming environment to help their students learn computational thinking. The fundamental hypothesis of the project is that engagement in workshops and on-line activities of the ScratchEd professional development community will enhance teacher knowledge about computational thinking, their practice of design-based instruction, and their students' learning of key computational thinking concepts and habits of mind.

Hofstra University
08/01/2008

This project develops and researches the academic potential of a hybrid instructional model that infuses computer simulations, modeling, and educational gaming into middle school technology education programs. These prototypical materials use 3-D simulations and educational gaming to support students’ learning of STEM content and skills through developing solutions to design challenges.

University of Nebraska-Lincoln
01/01/2008

This project creates materials for grades 5-8 that address and assess STEM concepts through a robotics curriculum. The curriculum addresses STEM standards through such documents as the NCTM Focal Points and the Atlas of Science Literacy. Students can use the TekBot robotics platform in three problem-based ways: building, moving, and programming. The intent is to scale up to a cyber-infrastructure that supports the national distribution and implementation of the curriculum.

American Association for the Advancement of Science (AAAS)
09/01/2011

This project uses green school buildings as an opportunity to involve students in STEM activities in their environment. The goal is to produce an action plan for transforming the middle school science and mathematics curriculum by rethinking the content that is taught, the ways in which students and teachers can engage effectively with that content, and the role that technology can play to ensure wide access to the data and to the new curriculum.

University of North Carolina at Greensboro (UNC Greensboro)
06/01/2005

This research study investigates the impact of the wireless environment on high school science resulting in a professional development model that will inform professional developers, administrators, policy-makers and teachers. The project uses in-depth case studies to examine context factors (e.g. technology implementation plans, school culture, extent and type of teacher professional development and teacher background) and critical interactions that may influence science instructional practice in wireless high school science classrooms.

University of Kansas (KU)
08/15/2010

This project develops a series of interactive on-line games and investigates the effect these games have on increasing middle school science students' and teachers' knowledge and skills of scientific argumentation. There are four areas of argumentation addressed by the games: (1) understanding a claim, (2) judging the evidence about a claim based on type and quality (objectivity, reliability or validity), (3) analyzing the reasoning applied to the claim, and (4) evaluating the claim.

University of Michigan (UM)
07/01/2005

This project is designed to enhance understanding of how online professional development environments contribute to teach learning, changes in classroom practice and changes in student learning in comparison to face-to-face professional development. Using secondary school teachers learning to use a reformed-oriented environmental science curriculum, groups of teachers will be randomly assigned to one of three conditions: (1) traditional face-to-face workshop, (2)self-guided online professional development, or (3)online “short course” professional development guided by a facilitator.

North Carolina State University (NCSU)
08/15/2010

The project designs and implements technologies that combine artificial intelligence in the form of intelligent tutoring systems with multimedia interfaces (i.e., an electronic science notebook and virtual labs) to support children in grades 4-5 learning science. The students use LEONARDO's intelligent virtual science notebooks to create and experiment with interactive models of physical phenomena.

LessonLab, Inc.
05/01/2004

This project develops video-case modules for use in pre-service teacher preparation programs. Modules target specific grade bands (K-3, 4-5, 6-8) and address standards-based content domains, to help future teachers deepen their content knowledge, pedagogic skills and ability to analyze student thinking. The cases illustrate reform classroom practices and more traditional instruction, include interviews with teachers and students, and incorporate a set of analytic tasks that promote users' critical observations of the cases.