The goal of the grant is to establish a culture of inquiry with all partners in order to develop interdiciplinary, authentic STEM learning environments. Design-based research provides iterative cycles of implementation to explore and refine the approach as a transformative model for STEM programs. The model supports a sustainable approach by building the capacity of schools to focus on design issues related to content, pedagogy, and leadership.
Projects
In this project researchers are implementing and studying a research-based curriculum that was designed to help children in grades 3-5 prepare for learning algebra at the middle school level. Researchers are investigating the impact of a long-term, comprehensive early algebra experience on students as they proceed from third grade to sixth grade. Researchers are working to build a learning progression that describes how algebraic concepts develop and mature from early grades through high school.
This research project is an investigation of the role that examples play in helping learners become proficient in proving mathematical conjectures. Researchers are building a framework that characterizes the development of example use as students advance from middle school into post secondary school. Using this developmental information, the researchers are creating instructional strategies that help students think about the nature and value of proof as well as how to construct a mathematical proof.
This study is based on a theoretical model that embeds engineering design within social, cultural, and linguistic activity, seeking to understand (a) how adolescent English learners draw from various linguistic, representational, and social resources as they work toward solving community-based engineering design challenges; (b) the problems they face in working on the challenges and how they seek to overcome those problems; and (c) adolescents' willingness to conceptualize themselves as future engineers.
This project supports the development of technological fluency and understanding of STEM concepts through the implementation of design collaboratives that use eCrafting Collabs as the medium within which to work with middle and high school students, parents and the community. The examine how youth at ages 10-16 and families in schools, clubs, museums and community groups learn together how to create e-textile artifacts that incorporate embedded computers, sensors and actuators.
The goal of this project is to develop a provisional learning progression spanning grades K-5 that articulates and tests the potential of experiencing, describing, and representing space as the core of an integrated STEM education. The science of space has an extensive scope within and across disciplinary boundaries of science, mathematics and engineering; the project will create a coherent approach to elementary instruction in which mathematical reasoning about space is systematically cultivated.
This project is developing modules for middle school and high school students in Earth and Space Science classes, testing the hypothesis that students who use computational models, analyze real-world data, and engage in building scientific reasoning and argumentation skills are better able to understand Earth science core ideas and how humans impact Earth's systems. The resulting online curriculum modules and teacher guides provide exciting examples of next generation Earth science teaching and learning materials.
Ocean Tracks is developing and classroom testing powerful Web-based visualization and analysis tools derived from state-of-the-art knowledge about how to support student inquiry with data. Powerful Web-based visualization and analysis tools, derived from state-of-the-art knowledge about how to support student inquiry with data, allow students to learn and apply core concepts in ecology, biology, environmental science, earth science, oceanography, and climate science.
Ocean Tracks is developing and classroom testing powerful Web-based visualization and analysis tools derived from state-of-the-art knowledge about how to support student inquiry with data. Powerful Web-based visualization and analysis tools, derived from state-of-the-art knowledge about how to support student inquiry with data, allow students to learn and apply core concepts in ecology, biology, environmental science, earth science, oceanography, and climate science.
This project is developing evidence about the efficacy of the Engineering is Elementary curriculum under ideal conditions by studying the student and teacher-level effects of implementation. The project seeks to determine the core elements of the curriculum that support successful use. The findings from this study have broad implications for how engineering design curricular can be developed and implemented at the elementary level.
This study examines the impact of the newly revised Advanced Placement (AP) Biology and Chemistry courses on students' understanding of and ability to utilize scientific inquiry, on students' confidence in engaging in college-level material, and on students’ enrollment and persistence in college STEM majors. The project provides estimates of the impact of students' AP-course taking on their progress into postsecondary educational experiences and their intent to continue to prepare to be future engineers and scientists.
This project is developing teaching modules that engage high school students in learning and using mathematics. Using geo-spatial technologies, students explore their city with the purpose of collecting data they bring back to the formal classroom and use as part of their mathematics lessons. This place-based orientation helps students connect their everyday and school mathematical thinking. Researchers are investigating the impact of place-based learning on students' attitudes, beliefs, and self-concepts about mathematics in urban schools.
This project is studying three models of professional development (PD) to test the efficacy of a practicum for grade 3-5 in-service teachers organized in three cohorts of 25. There will be 75 teachers and their students directly impacted by the project. Additional impacts of the project are research results and professional development materials, including a PD implementation guide and instructional videos.
This project is studying measurement practices from pre-K to Grade 8, as a coordination of the STEM disciplines of mathematics and science. This research project tests, revises and extends learning trajectories for children's knowledge of geometric measurement across a ten-year span of human development. The goal will be to validate all components of each learning trajectory, goal, developmental progression, and instruction tasks, as well as revising each LT to reflect the outcomes of the experiments.
The new ViSTA Plus study explores implementation of a program for pre-service/beginning teachers that is fully centered on learning from an analysis-of-practice perspective, addressing the central research question of "What is the value of a videocase-based, analysis-of-practice approach to elementary science teacher preparation?" The project is producing science-specific, analysis-of-practice materials to support the professional development of teacher educators and professional development leaders using the ViSTA Plus program at universities and in district-based induction programs.
In this project, investigators will convene a group of 15 African American science educators, scientists, and doctoral student scholars and assign them to small work groups to design and conduct multi-site micro-research studies on learning activities that promote science learning and teaching. Work groups will investigate different learning and teaching approaches used in K-12 rural and urban school settings to identify effects on student science learning using quantitative, qualitative, or mixed design studies.
The project at Spelman College includes activities that develop computational thinking and encourage middle school, African-American girls to consider careers in computer science. Over a three-year period, the girls attend summer camp sessions of two weeks where they learn to design interactive games. Experts in Computational Algorithmic Thinking as well as undergraduate, computer science majors at Spelman College guide the middle-school students in their design of games and exploration of related STEM careers.
Educating the Imagination will develop a studio approach to science for underrepresented high school students. The approach integrates scientific and artistic habits of mind and forms of engagement for meaningful learning in water-related sciences. Youth will a) investigate significant water-related phenomena, b) develop creative responses to the phenomena that foster new understandings and possibilities for action, and c) exhibit their responses community-wide to involve others in re-imagining water locally and globally.
This exploratory project is working in collaboration with teachers to increase their knowledge of mathematics for teaching in middle school. In addition to geometry and algebra, the research component of the project is providing insights into how teachers use their mathematical knowledge to increase argumentation in the classroom and to help students build skills in mathematical argumentation.
This project is developing and testing a curricular learning progression of early algebra objectives and activities for students in grades 3 - 5. The goal of the work is to provide teachers with curricular guidance and instructional resources that are useful in preparing students for success in study of algebra at the middle grade level. The project is also developing and validating assessment tools for evaluating student progress toward essential pre-algebra mathematical understandings.
This is an exploratory study to identify critical aspects of effective science formative assessment (FA) practices for English Language Learners (ELLs), and the contextual factors influencing such practices. FA, in the context of the study, is viewed as a process contributing to the science learning of ELLs, as opposed to the administration of discrete sets of instruments to collect data from students. The study targets Spanish-speaking, elementary and middle school students.
This is an exploratory study to identify critical aspects of effective science formative assessment (FA) practices for English Language Learners (ELLs), and the contextual factors influencing such practices. FA, in the context of the study, is viewed as a process contributing to the science learning of ELLs, as opposed to the administration of discrete sets of instruments to collect data from students. The study targets Spanish-speaking, elementary and middle school students.
This project uses green school buildings as an opportunity to involve students in STEM activities in their environment. The goal is to produce an action plan for transforming the middle school science and mathematics curriculum by rethinking the content that is taught, the ways in which students and teachers can engage effectively with that content, and the role that technology can play to ensure wide access to the data and to the new curriculum.
This project will design, develop, and test an online collaborative learning environment where students and teachers solve mathematical problems and communicate their thinking. This online collaborative learning environment will help increase the quality and quantity of math discourse among mathematics teachers and students. The researchers will also examine the impact of the online collaborative learning environment on students' significant mathematical discourse and achievement.
This project designs, constructs, and field-tests a web-based, online collaborative environment for supporting the teaching and learning of inquiry-based high school physics. Based on an interactive digital workbook environment, the team is customizing the platform to include scaffolds and other supports for learning physics, fostering interaction and collaboration within the classroom, and facilitating a design-based approach to scientific experiments.