Enhancing Games with Assessment and Metacognitive Emphases (EGAME)

This development and research project designs, develops, and tests a digital game-based learning environment for supporting, assessing and analyzing middle school students' conceptual knowledge in learning physics, specifically Newtonian mechanics. This research integrates work from prior findings to develop a new methodology to engage students in deep learning while diagnosing and scaffolding the learning of Newtonian mechanics.

Lead Organization(s): 
Award Number: 
1119290
Funding Period: 
September 1, 2011 to August 31, 2015
Full Description: 

This development and research project from Vanderbilt University, Facet Innovations, and Filament Games, designs, develops, and tests a digital game-based learning environment for supporting, assessing and analyzing middle school students' conceptual knowledge in learning physics, specifically Newtonian mechanics. This research integrates work from prior findings and refines computer assisted testing and Hidden Markov Modeling to develop a new methodology to engage students in deep learning while diagnosing and scaffolding the learning of Newtonian mechanics.

The project uses a randomized experimental 2 x 1 design comparing a single control condition to a single experimental condition with multiple iterations to test the impact of the game on the learning of Newtonian physics. Using designed based research with teachers and students, the researchers are iteratively developing and testing the interactions and knowledge acquisition of students through interviews, pre and post tests and stealth assessment. Student learner action logs are recorded during game-play along with randomized student interviews. Students' explanations and game-play data are collected and analyzed for changes in domain understanding using pre-post tests assessment.

The project will afford the validation of EGAME as an enabler of new knowledge in the fields of cognition, conceptual change, computer adaptive testing and Hidden Markov Modeling as 90 to 300 middle school students learn Newtonian mechanics, and other science content in game-based learning and design. The design of this digital game platform encompasses a very flexible environment that will be accessible to a diverse group of audiences, and have a transformational affect that will advance theory, design and practice in game-based learning environments.

Project Materials

Title Type Post date
Enhancing Games with Assessment and Metacognitive Emphases (EGAME) Poster 05/30/2016 - 12:29pm