Projects

08/15/2007

Project M2 is producing and disseminating curriculum materials in geometry and measurement for students in grades K-2. This builds on success of the M3 U.S. Department of Education curriculum grant for students in Grades 3-5. (www.projectm3.org). Project M2 units are advanced units for all students designed using research-based practices in mathematics, early childhood, and gifted education. Curricular materials focus on promising discourse and hands-on inquiry of rich problem-situations.  

09/01/2007

This project aims to develop a software diagnostic tool for integrating diagnostic interviews, group administered assessments, and student data in real-time so that teachers can enter and view student status information. This project would concentrate on rational number learning in grades 3-8. The design is based on a model of learning trajectories developed from existing research studies.

10/01/2007

This project has pioneered simulation-based assessments of model-based science learning and inquiry practices for middle school physical and life science systems. The assessment suites include curriculum-embedded, formative assessments that provide  immediate, individualized feedback and graduated coaching with supporting reflection activities as well as summative end-of-unit benchmark assessments. The project has documented the instructional benefits, feasibility, utility, and technical quality of the assessments with over 7,000 students and 80 teachers in four states.

09/01/2009

This project targets first- and second-grade children who struggle to develop a deeper understanding of the mathematical strand of number and operation. The research team will (a) identify the various specific cognitive obstacles of first- and second-grade students who are struggling in number and operation, and (b) explore how instructional tasks designed to address specific cognitive obstacles affect the learning trajectory of struggling learners in number and operation.

09/01/2009

This project is developing and evaluating effectiveness of 15 - 20 short computer mediated animations and games that are designed to: (1) increase students' conceptual understanding in especially problematic topics of middle grades mathematics; and (2) increase students' mathematics process skills with a focus on capabilities to think and talk mathematically.

09/01/2009

This project is developing a system for producing automated professional mentoring while students play computer games based on STEM professions. The project explores a specific hypothesis about STEM mentoring: A sociocultural model as the basis of an automated tutoring system can provide a computational model of participation in a community of practice, which produces effective professional feedback from nonplayercharacters in a STEM learning game.

09/01/2010

This project is initiating an innovative approach to pre-K students' development of quantitative reasoning through measurement. This quantitative approach builds on measurement concepts and algebraic design of the pre-numeric stage of instruction found in the Elkonin-Davydov (E-D) elementary mathematics curriculum from Russia. The project team is adapting and refocusing the conceptual framework and learning tasks of the E-D pre-numeric stage for use with four-year-olds.

09/01/2010

This project is using innovative Geospatial Information Technology-based learning in high school environmental science studies with a focus on the meteorological and ecological impacts of climate change. The resources developed are using ArcGIS Explorer Desktop and Google Earth software applications to increase students' learning and interest in science and careers and will be adaptable for teachers to improve classroom implementation.

09/01/2010

This project is a collaborative effort that aims to develop a grade 3-5 Learning Progression that will provide a coherent approach to teaching energy in elementary school and lay a strong foundation for further learning in middle school. The project will identify a network of core concepts and principles about energy that are fundamental and general enough to be compatible with scientific ideas about energy, yet within reach of 5th graders.

07/01/2011

This project is investigating the learning that can take place when elementary school students are directly involved in the collection, sense-making, and analysis of real, personally-meaningful data sets. The hypotheses of this work are that by organizing elementary statistics instruction around the study of physical activities, students will have greater personal engagement in data analysis processes and that students will also develop more robust understandings of statistical ideas.

09/01/2011

This project will modify the teacher preparation program for preK-8 teachers. The program is designed to help pre-service teachers learn mathematics well, learn to access students' cultural funds of knowledge, and learn to encourage students' mathematical thinking. The developers are designing (a) modules that can be used in teacher preparation courses, (b) a mentoring program for new teachers, and (c) on-line networks to facilitate collaboration among participating teachers and institutions.

09/01/2011

This five-year project investigates how to provide continuous assessment and feedback to guide students' understanding during science inquiry-learning experiences, as well as detailed guidance to teachers and administrators through a technology-enhanced system. The assessment system integrates validated automated scorings for students' written responses to open-ended assessment items into the "Web-based Inquiry Science Environment" (WISE) program.

09/01/2011

This project is focused on creating, testing, refining, and studying a computer-based, individualized, interactive learning system for intermediate/middle school students or by teachers in classrooms. This learning system is called Individualized Dynamic Geometry Instruction and will contain four instructional modules in geometry and measurement that reflect the recommendations of the Common Core State Standards.

09/01/2011

This project designs materials and an accompanying support system to enable the development of expertise in the teaching of mathematics at the elementary level. The project has four main components: online professional development modules; practice-based assessments; resources for facilitators; and web-based technologies to deliver module content to diverse settings. Three modules are being developed and focus on fractions, reasoning and explanation, and geometry. Each module is organized into ten 1.5 hour sessions.

05/15/2012

This is a planning effort to explore future directions and innovations related to educational design in science, technology, engineering, and mathematics education in partnership with the International Society for Design and Development in Education. The planning activity will engage a core group of ISDDE principals in the articulation and examination of design processes for the Transforming STEM Learning program at NSF with a goal of developing an agenda for further discussion and research conceptualization.

08/01/2012

This project is studying measurement practices from pre-K to Grade 8, as a coordination of the STEM disciplines of mathematics and science. This research project tests, revises and extends learning trajectories for children's knowledge of geometric measurement across a ten-year span of human development. The goal will be to validate all components of each learning trajectory, goal, developmental progression, and instruction tasks, as well as revising each LT to reflect the outcomes of the experiments.

08/15/2012

This collaborative project is developing instruments to assess secondary teachers' Mathematical Habits of Mind (MHoM). These habits bring parsimony, focus, and coherence to teachers' mathematical thinking and, in turn, to their work with students. This work fits into a larger research agenda with the ultimate goal of understanding the connections between secondary teachers' mathematical knowledge for teaching and secondary students' mathematical understanding and achievement.

09/01/2012

This project is developing teaching modules that engage high school students in learning and using mathematics. Using geo-spatial technologies, students explore their city with the purpose of collecting data they bring back to the formal classroom and use as part of their mathematics lessons. This place-based orientation helps students connect their everyday and school mathematical thinking. Researchers are investigating the impact of place-based learning on students' attitudes, beliefs, and self-concepts about mathematics in urban schools.

09/01/2012

This project will develop a new assessment for children ages 3-7 to provide teachers with diagnostic information on a child's development of mathematics facility on ten domains such as counting, sequencing, adding/subtracting, and measurement. The Comprehensive Research-based Mathematics Ability (CREMAT) is being developed using innovative psychometric models to reveal information about children on specific attributes for each of the 10 domains.

05/15/2013

The goal of this project is to extend the theoretical and methodological construct of noticing to develop the concept of reciprocal noticing, a process by which teacher and student noticing are shared. The researcher argues that through reciprocal noticing the classroom can become the space for more equitable mathematics learning, particularly for language learners.

08/15/2013

This research and development project is premised on the notion that recent technological developments have made it feasible to represent classroom work in new ways. In addition to watching recorded videos of classroom interactions or reading written cases, teacher educators and teachers can now watch animations and image sequences, realized with cartoon characters, and made to depict activities that happened, or could have happened, in a mathematics classroom.

07/01/2014

This project is documenting how students with learning disabilities (LD) access and advance their conceptual understanding of fractions.  Rather than focusing on the knowledge students do not have, this work is focused on uncovering students' informal knowledge that can bridge to fractions and how instruction can be used to promote conceptual change. 

 

07/01/2014

SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for dual language learners (DLLs) with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials.

07/15/2014

Advancing Reasoning addresses the lack of materials for teacher education by investigating pre-service secondary mathematics teachers' quantitative reasoning in the context of secondary mathematics concepts including function and algebra. The project extends prior research in quantitative reasoning to develop differentiated instructional experiences and curriculum that support prospective teachers' quantitative reasoning and produce shifts in their knowledge.

09/01/2014

Using design-based research, with teachers as design partners, the project will create and refine project-based, hands-on robotics curricula such that science and math content inherent in robotics and related engineering design practices are learned. To provide teachers with effective models to capitalize on robotics for elucidating science and math concepts, a design-based Professional Development program will be built using principles of technological, pedagogical, and content knowledge (TPACK).