Disciplinary Content Knowledge

Refining a Model with Tools to Develop Math PD Leaders: An Implementation Study

This project will work with middle school mathematics teachers in San Francisco Unified School District to develop their capacity to conduct professional development for the teachers in their schools. A central goal of this project is to develop models and resources for effective professional development and preparation of professional development leaders in mathematics with special attention to students who are English language learners.

Lead Organization(s): 
Award Number: 
1417261
Funding Period: 
Thu, 01/01/2015 to Tue, 12/31/2019
Full Description: 

There is increased demand for K-12 teacher professional development that yields improvements in student learning and achievement. This need is particularly high given widespread adoption of the Common Core State Standards (CCSS) in mathematics which challenges teachers to incorporate mathematical thinking and problem solving into their instruction. The professional development challenge is exacerbated as our nation's demographics continue to shift, increasing the number of English language learners in school districts throughout the U.S. To meet this demand, the educational community must develop large-scale, system-level professional development programs aligned with the CCSS that are scalable and sustainable. The project team from Stanford University will work with middle school mathematics teachers in San Francisco Unified School District to develop their capacity to conduct professional development for the teachers in their schools. A central goal of this project is to develop models and resources for effective professional development and preparation of professional development leaders in mathematics with special attention to students who are English language learners. These models and resources will: provide school districts with the tools to build local capacity and provide sustainable professional development to all middle school mathematics teachers; improve the quality of teaching and, in turn, make important progress toward ensuring that all students in middle school can achieve the mathematical skills and understandings identified in the new standards; and meet the needs of English language learners. In addition, the Stanford team will contribute to the knowledge base in mathematics education, professional development and English language learners.

In previous work, the team developed two interconnected models--the Problem-Solving Cycle (PSC) and the Mathematics Leadership Preparation (MLP) models for preparing professional development leaders. The PSC model consists of a series of interconnected workshops organized around a problem that can be solved using multiple representations and solutions and can be adapted for multiple grade levels. Each cycle focuses on a different math problem. During the first cycle, teachers collaboratively solve the focal math problem and develop plans for teaching it to their students. Teachers then teach the lesson in their classes and the lessons are videotaped. Subsequent workshops focus on participants' classroom experiences teaching the problem. The goals of these workshops are to help teachers learn how to build on student thinking and to explore a variety of instructional practices. They rely heavily on video clips from the PSC lesson to foster productive conversations and situate the conversations in teachers' classroom instruction. The MLP model is designed to prepare Math Leaders to facilitate the PSC. The MLP prepares teachers to lead professional development for their colleagues. These models showed promise of effectiveness in improving middle school mathematics teachers' knowledge and practice, developing math professional development leaders, and improving student achievement. Investigators intend to refine and test the design of the PSC and MLP models and develop resources that can be used by other schools and districts, as well as conduct an evaluation of the work.

CAREER: Proof in Secondary Classrooms: Decomposing a Central Mathematical Practice

This project will develop an intervention to support the teaching and learning of proof in the context of geometry.

Lead Organization(s): 
Award Number: 
1453493
Funding Period: 
Wed, 07/15/2015 to Tue, 08/31/2021
Full Description: 

This project, funded as part of the CAREER program, would add to the knowledge base on the teaching and learning of proof in the context of the most prevalent course/topic in which proof is taught in the K-12 curriculum, geometry. Given the centrality of the role of proof, and the persistent difficulties in teaching proof in the K-12 and undergraduate curriculum, the topic is of vital importance. The work is novel, focusing on an area of proof that is understudied, the introduction of students to the topic of proof. While building on prior work in proof, the project will tackle an important area of beginning to teach proof, which may lead to broader innovations at both the K-12 and undergraduate level. The project will produce a resource, a set of lessons, which can be used widely and are likely to be broadly disseminated based on the PI's previous NSF-supported work, which has been broadly disseminated to practitioner audiences. 

The goal of the project is to develop an intervention to support the teaching and learning of proof in the context of geometry. This study takes as its premise that if we introduce proof, by first teaching students particular sub-goals of proof, such as how to draw a conclusion from a given statement and a definition, then students will be more successful with constructing proofs on their own. The 5-year design and development study builds on the researcher's prior work from a Knowles Science Teaching Fellowship (KSTF) grant to study how teachers introduce proof to students. This study will build on the prior work to refine a framework for introducing proof developed in the KSTF study. Using this framework the researcher will work with five high school geometry teachers to develop lessons via Lesson Study methods to introduce sub-goals of proof. The PI will study the impact of the use of these lessons on students' ability to perform proofs, and compare to students of ten teachers who will not have participated in the intervention.

 

CAREER: L-MAP: Pre-service Middle School Teachers' Knowledge of Mathematical Argumentation and Proving

This program of research will examine how middle school pre-service teachers' knowledge of mathematical argumentation and proving develops in teacher preparation programs. The project explores the research question: What conceptions of mathematical reasoning and proving do middle school preservice teachers hold in situations that foster reasoning about change, proportionality, and proportional relationships, as they enter their mathematics course sequence in their teacher preparation program, and how do these conceptions evolve throughout the program?

Lead Organization(s): 
Award Number: 
1350802
Funding Period: 
Tue, 07/15/2014 to Tue, 06/30/2020
Full Description: 

The field of mathematics teacher education needs a strong understanding of pre-service teachers' knowledge about the practice of mathematical argumentation and proof, including the development of this knowledge, to effectively move pre-service teachers toward a more sophisticated understanding and enactment of this practice with their own students. The integrated research and educational activities will contribute to the knowledge base teacher education programs need to effectively prepare middle school teachers for meeting the challenges of how to make reasoning and proof an integral aspect of instructional practice. The research results have the potential to guide teacher educators and educational researchers concerned with strengthening pre-service teachers' ability to make reasoning and proving an integral aspect of school mathematics. Consequently, pre-service teachers will be better equipped to develop mathematical reasoning skills in their future students and to support their students in learning mathematics with understanding. Given this country's growing need for a competent STEM workforce, helping all students learn mathematics in a way that supports deeper understanding is a priority. Additionally, the support of early CAREER scholars in mathematics education will add to the capacity of the country to address issues in mathematics education in the future.

The objective of this program of research is to examine how middle school pre-service teachers' knowledge of mathematical argumentation and proving develops in teacher preparation programs. The project explores the research question: What conceptions of mathematical reasoning and proving do middle school preservice teachers hold in situations that foster reasoning about change, proportionality, and proportional relationships, as they enter their mathematics course sequence in their teacher preparation program, and how do these conceptions evolve throughout the program? This development will be studied along three dimensions: (a) pre-service teachers' own ability to formulate mathematical arguments, (b) their ability to analyze mathematical arguments, and (c) their ability to analyze situations that engage students in mathematical argumentation and proving. Cross-sectional and longitudinal studies of 60 pre-service teachers' models, or systems of interpretation, of mathematical argumentation and proof in curricular context that foster reasoning about change, proportionality and proportional relationships will be conducted to provide an understanding of the trajectory that captures how pre-service teachers develop their knowledge of mathematical argumentation and proving throughout their university mathematics preparation program and into their student teaching.

CAREER: Advancing Secondary Mathematics Teachers' Quantitative Reasoning

Advancing Reasoning addresses the lack of materials for teacher education by investigating pre-service secondary mathematics teachers' quantitative reasoning in the context of secondary mathematics concepts including function and algebra. The project extends prior research in quantitative reasoning to develop differentiated instructional experiences and curriculum that support prospective teachers' quantitative reasoning and produce shifts in their knowledge.

Award Number: 
1350342
Funding Period: 
Tue, 07/15/2014 to Tue, 06/30/2020
Full Description: 

Science, Technology, Engineering and Mathematics [STEM] and STEM education researchers and policy documents have directed mathematics educators at all levels to increase emphasis on quantitative reasoning so that students are prepared for continued studies in mathematics and other STEM fields. Often, teachers are not sufficiently prepared to support their students' quantitative reasoning. The products generated by this project fill a need for concrete materials at the pre-service level that embody research-based knowledge in the area of quantitative reasoning. The accessible collection of research and educational products provides a model program for changing prospective mathematics teachers' quantitative reasoning that is adoptable at other institutions across the nation. Additionally, the support of early CAREER scholars in mathematics education will add to the capacity of the country to address issues in mathematics education in the future.

Advancing Reasoning addresses the lack of materials for teacher education by investigating pre-service secondary mathematics teachers' quantitative reasoning in the context of secondary mathematics concepts including function and algebra. The project extends prior research in quantitative reasoning to develop differentiated instructional experiences and curriculum that support prospective teachers' quantitative reasoning and produce shifts in their knowledge. Three interrelated research questions guide the project: (i) What aspects of quantitative reasoning provide support for prospective teachers' understanding of major secondary mathematics concepts such as function and algebra? (ii) How can instruction support prospective teachers' quantitative reasoning in the context of the teaching and learning of major secondary mathematics concepts such as function and algebra? (iii) How do the understandings prospective teachers hold upon entering a pre-service program support or inhibit their quantitative reasoning? Advancing Reasoning addresses these questions by enacting an iterative, multi-phase study with 200 prospective teachers enrolled in a secondary mathematics education content course over 5 years. The main phase of the study implements a series of classroom design experiments to produce knowledge on central aspects of prospective teachers' quantitative reasoning and the instructional experiences that support such reasoning. By drawing this knowledge from a classroom setting, Advancing Reasoning contributes research-based and practice-driven deliverables that improve the teaching and learning of mathematics.

Moving Next Generation Science Standards into Practice: A Middle School Ecology Unit and Teacher Professional Development Model

Schools and teachers face unprecedented challenges in meeting the ambitious goals of integrating core interdisciplinary science ideas with science and engineering practices as described in new standards. This project will develop a middle school ecology unit and related teacher professional development that will help high-need and urban middle school students, including English Language Learners, understand these ideas and related practices.

Award Number: 
1418235
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

Schools and teachers face unprecedented challenges in meeting the ambitious goals of integrating core interdisciplinary science ideas with science and engineering practices as described in new standards. The American Museum of Natural History (AMNH), in collaboration with the University of Connecticut (UConn), and the Lawrence Hall of Science (the Hall), will develop a middle school ecology unit and related teacher professional development that will help high-need and urban middle school students, including English Language Learners, understand these ideas and related practices. Teachers will be supported through professional development that is directly linked to the curriculum and is designed to develop their science content knowledge as well as their knowledge of how to teach the curriculum. The project builds on existing AMNH resources that include video and text passages supported with literacy strategies, online interactive data tools to plan and carry out investigations, and prior research on these resources used with teachers in professional development and with students in classrooms. In addition to serving the schools, teachers and students who directly participate, the project's deliverables include the ecology unit, teacher professional development, assessment tools, and a model for designing such comprehensives science programs that relate to NGSS.

The curriculum unit will be modeled after the Biological Sciences Curriculum Study (BSCS) 5E model that will use the 5 Phases (Engage, Explore, Explain, Elaborate, and Evaluate) for students to work through with each of five themes: Ecological Communities, Food Webs, A River Ecosystem, Zebra Mussel Invasion, and Monitoring Human Impact. Teachers will participate in 12 days of professional development that will introduce the program's pedagogical approach (the 5E model) and how it reflects NGSS, with teachers having significant time to learn the science, try out the activities, learn how to facilitate the program, provide feedback on the program as part of the evaluation, and reflect on their practice. The initial approach to the curriculum and teacher professional development will be designed in Year 1 and then iteratively revised and evaluated in Years 2-4 through formative evaluation that focuses on curriculum PD, and measures of student and teacher outcomes. The evaluation will assess the contribution of teacher science and pedagogical knowledge to increases in student knowledge. The evaluation findings and assessment tools developed for the project will provide the foundation for a future efficacy study. The project is one of a relatively small number of projects funded through NSF's DRK-12 program that directly addresses the need for NGSS-related learning resources. The project's learning resources, assessment tools, and model for designing NGSS-related and comprehensive science programs will be shared through professional publications, conference and workshop presentations, and liaison with organizations active in developing new resources bring NGSS into practice.

Disruptions Curriculum Website, with links to Discruptions in Ecosystems:

Inventory of items for assessing teachers' knowledge of content and PCK

Teaching Environmental Sustainability - Model My Watershed (Collaborative Research: Staudt)

This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education.

Lead Organization(s): 
Award Number: 
1417722
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. It will teach a systems approach to problem solving through hands-on activities based on local data and issues. This will provide an opportunity for students to act in their communities while engaging in solving problems they find interesting, and require synthesis of prior learning. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education. It will also integrate new low-cost environmental sensors that allow students to collect and upload their own data and compare them to data visualized on the new MMW v2. This project will transform the ability of teachers throughout the nation to introduce hands-on geospatial analysis activities in the classroom, to explore a wide range of geographic, social, political and environmental concepts and problems beyond the project's specific curricular focus.

The Next Generation Science Standards state that authentic research experiences are necessary to enhance STEM learning. A combination of computational modeling and data collection and analysis will be integrated into this project to address this need. Placing STEM content within a place- and problem-based framework enhances STEM learning. Students, working in groups, will not only design solutions, they will be required to defend them within the application portal through the creation of multimedia products such as videos, articles and web 2.0 presentations. The research plan tests the overall hypothesis that students are much more likely to develop an interest in careers that require systems thinking and/or spatial thinking, such as environmental sciences, if they are provided with problem-based, place-based, hands-on learning experiences using real data, authentic geospatial analysis tools and models, and opportunities to collect their own supporting data. The MMW v2 web app will include a data visualization tool that streams data related to the modeling application. This database will be modified to integrate student data so teachers and students can easily compare their data to data collected by other students and the government and research data. All data will be easily downloadable so that students can increase the use of real data to support the educational exercises. As a complement to the model-based activities, the project partners will design, manufacture, and distribute a low-cost environmental monitoring device, called the Watershed Tracker. This device will allow students to collect real-world data to enhance their understanding of watershed dynamics. Featuring temperature, light, humidity, and soil moisture sensors, the Watershed Tracker will be designed to connect to tablets and smartphones through the audio jack common to all of these devices.

Teaching Environmental Sustainability - Model My Watershed (Collaborative Research: Kerlin)

This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education.

Lead Organization(s): 
Award Number: 
1418133
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Project Evaluator: 
Education Design
Full Description: 

This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. It will teach a systems approach to problem solving through hands-on activities based on local data and issues. This will provide an opportunity for students to act in their communities while engaging in solving problems they find interesting, and require synthesis of prior learning. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education. It will also integrate new low-cost environmental sensors that allow students to collect and upload their own data and compare them to data visualized on the new MMW v2. This project will transform the ability of teachers throughout the nation to introduce hands-on geospatial analysis activities in the classroom, to explore a wide range of geographic, social, political and environmental concepts and problems beyond the project's specific curricular focus.

The Next Generation Science Standards state that authentic research experiences are necessary to enhance STEM learning. A combination of computational modeling and data collection and analysis will be integrated into this project to address this need. Placing STEM content within a place- and problem-based framework enhances STEM learning. Students, working in groups, will not only design solutions, they will be required to defend them within the application portal through the creation of multimedia products such as videos, articles and web 2.0 presentations. The research plan tests the overall hypothesis that students are much more likely to develop an interest in careers that require systems thinking and/or spatial thinking, such as environmental sciences, if they are provided with problem-based, place-based, hands-on learning experiences using real data, authentic geospatial analysis tools and models, and opportunities to collect their own supporting data. The MMW v2 web app will include a data visualization tool that streams data related to the modeling application. This database will be modified to integrate student data so teachers and students can easily compare their data to data collected by other students and the government and research data. All data will be easily downloadable so that students can increase the use of real data to support the educational exercises. As a complement to the model-based activities, the project partners will design, manufacture, and distribute a low-cost environmental monitoring device, called the Watershed Tracker. This device will allow students to collect real-world data to enhance their understanding of watershed dynamics. Featuring temperature, light, humidity, and soil moisture sensors, the Watershed Tracker will be designed to connect to tablets and smartphones through the audio jack common to all of these devices.

Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System

SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for dual language learners (DLLs) with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1417040
Funding Period: 
Tue, 07/01/2014 to Sat, 06/30/2018
Full Description: 

The 4-year project, Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System (SciMath-DLL), will address a number of educational challenges. Global society requires citizens and a workforce that are literate in science, technology, engineering, and mathematics (STEM), but many U.S. students remain ill prepared in these areas. At the same time, the children who fill U.S. classrooms increasingly speak a non-English home language, with the highest concentration in the early grades. Many young children are also at risk for lack of school readiness in language, literacy, mathematics, and science due to family background factors. Educational efforts to offset early risk factors can be successful, with clear links between high quality early learning experiences and later academic outcomes. SciMath-DLL will help teachers provide effective mathematics and science learning experiences for their students. Early educational support is critical to assure that all students, regardless of socioeconomic or linguistic background, learn the STEM content required to become science and mathematics literate. Converging lines of research suggest that participation in sustained mathematics and science learning activities could enhance the school readiness of preschool dual language learners. Positive effects of combining science inquiry with supports for English-language learning have been identified for older students. For preschoolers, sustained science and math learning opportunities enhance language and pre-literacy skills for children learning one language. Mathematics skills and science knowledge also predict later mathematics, science, and reading achievement. What has not been studied is the extent to which rich science and mathematics experiences in preschool lead to better mathematics and science readiness and improved language skills for preschool DLLs. Because the preschool teaching force is not prepared to support STEM learning or to provide effective supports for DLLs, professional development to improve knowledge and practice in these areas is required before children's learning outcomes can be improved.

SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for DLLs with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Development and research activities incorporate cycles of design-expert review-enactment- analysis-redesign; collaboration between researcher-educator teams at all project stages; use of multiple kinds of data and data sources to establish claims; and more traditional, experimental methodologies. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials, making the PD more flexible for use in a range of educational settings and training circumstances. An efficacy study will be completed to examine the potential of the SciMath-DLL resources, model, and tools to generate positive effects on teacher attitudes, knowledge, and practice for early mathematics and science and on children's readiness in these domains in settings that serve children learning two languages. By creating a suite of tools that can be used under differing educational circumstances to improve professional knowledge, skill, and practice around STEM, the project increases the number of teachers who are prepared to support children as STEM learners and, thus, the number of children who can be supported as STEM learners.

Promoting Active Learning Strategies in Biology (PALS)

This project examines the potential of two research-based and college-tested active learning strategies in high school classrooms: Process Oriented Guided Inquiry Learning (POGIL) and Peer Instruction by adapting the strategies for implementation in biology classes, with the goal of determining which strategy shows the most promise for increasing student achievement and attitudes toward science.

Award Number: 
1417735
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

The use of active learning strategies has long been advocated in the sciences, but high school science instruction remains highly didactic across the country. This project addresses this longstanding concern by examining the potential of two research-based and college-tested learning strategies in high school classrooms: Process Oriented Guided Inquiry Learning (POGIL) and Peer Instruction. The POGIL strategy was developed initially for chemistry classes, and Peer Instruction was developed within physics classes. These two learning strategies will be adapted for implementation in biology classes, with the goal of determining which strategy shows the most promise for increasing student achievement and attitudes toward science. The project will also study the influence of these instructional strategies on teacher beliefs about active learning and the contributions of these beliefs on student success in biology. Creation of the professional development model and materials for this project bring together high school biology teachers, university biology faculty, and science education specialists.

The project will conduct design and development research to iteratively develop the instructional materials through a collaboration of high school teachers and college faculty members experienced in using the instructional approaches being compared. Adaptation of the learning strategies for use in biology was chosen because biology is the science course most often taught across schools in the country, and it is required for graduation in the state where this project is being conducted. To compare the outcomes of the two instructional approaches, 42 teacher pairs will be randomly assigned to one of three treatment groups: POGIL, Peer Instruction, or traditional instruction. Outcomes of the instructional approaches will be measured in terms of conceptual gains among teachers and students, attitudes toward science, personal agency beliefs, and instructional implementation fidelity.

Preparing Urban Middle Grades Mathematics Teachers to Teach Argumentation Throughout the School Year

The objective of this project is to develop a toolkit of resources and practices that will help inservice middle grades mathematics teachers support mathematical argumentation throughout the school year. A coherent, portable, two-year-long professional development program on mathematical argumentation has the potential to increase access to mathematical argumentation for students nationwide and, in particular, to address the needs of teachers and students in urban areas.

Lead Organization(s): 
Award Number: 
1417895
Funding Period: 
Sun, 06/15/2014 to Thu, 05/31/2018
Full Description: 

The project is an important study that builds on prior research to bring a comprehensive professional development program to another urban school district, The District of Columbia Public Schools. The objective of this full research and development project is to develop a toolkit  that provides resources and practices for inservice middle grades mathematics teachers to support mathematical argumentation throughout the school year. Mathematical argumentation, the construction and critique of mathematical conjectures and justifications, is a fundamental disciplinary practice in mathematics that students often never master. Building on a proof of concept of the project's approach ifrom two prior NSF-funded studies, this project expands the model to help teachers support mathematical argumentation all year. A coherent, portable, two-year-long professional development program on mathematical argumentation has the potential to increase access to mathematical argumentation for students nationwide and, in particular, to address the needs of teachers and students in urban areas. Demonstrating this program in the nation's capital will likely attract broad interest and produces important knowledge about how to implement mathematical practices in urban settings. Increasing mathematical argumentation in schools has the potential for dramatic contributions to students' achievement and participation in 21st century workplaces.

Mathematical argumentation is rich discussion in which students take on mathematical authority and co-construct conjectures and justifications. For many teachers, supporting such discourse is challenging; many are most comfortable with Initiate-Respond-Evaluate types of practices and/or have insufficient content understanding. The professional development trains teachers to be disciplined improvisers -- professionals with a toolkit of tools, knowledge, and practices to be deployed creatively and responsively as mathematical argumentation unfolds. This discipline includes establishing classroom norms and planning lessons for argumentation. The model's theory of action has four design principles: provide the toolkit, use simulations of the classroom to practice improvising, support learning of key content, and provide job-embedded, technology-enabled supports for using new practices all year. Three yearlong studies will address design, feasibility, and promise. In Study 1 the team co-designs tools with District of Columbia Public Schools staff. Study 2 is a feasibility study to examine program implementation, identify barriers and facilitators, and inform improvements. Study 3 is a quasi-experimental pilot to test the promise for achieving intended outcomes: expanding teachers' content knowledge and support of mathematical argumentation, and increasing students' mathematical argumentation in the classroom and spoken argumentation proficiency. The studies will result in a yearlong professional development program with documentation of the theory of action, design decisions, pilot data, and instrument technical qualities.

Pages

Subscribe to Disciplinary Content Knowledge