Opening Pathways into Engineering Through an Illinois Physics and Secondary Schools Partnership

The Illinois Physics and Secondary Schools (IPaSS) Partnership Program responds to disparities in student access to high-quality, advanced physics instruction by bringing together Illinois high school physics teachers from a diverse set of school contexts to participate in intensive PD experiences structured around university-level instructional materials. This program will help teachers adapt, adopt, and integrate high-quality, university-aligned physics instruction into their classrooms, in turn opening more equitable, clear, and viable pathways for students into STEM education and careers. 

Full Description

This project will conduct research and teacher professional development (PD) to adapt university-level instructional materials for implementation by high school teachers in their physics courses. Access to high-quality, advanced physics instruction in high school can open pathways for students to attain university STEM degrees by preparing them for the challenges faced in gatekeeping undergraduate physics courses. Yet, across the nation, access to such advanced physics instruction is not universally available, particularly in rural, urban, and low-income serving districts, in which instructional resources for teachers may be more limited, and physics teacher isolation, under-preparation and out-of-field teaching are most common. The Illinois Physics and Secondary Schools (IPaSS) Partnership Program responds to these disparities in student access by bringing together Illinois high school physics teachers from a diverse set of school contexts to participate in intensive PD experiences structured around university-level instructional materials. This program will help teachers adapt, adopt, and integrate high-quality, university-aligned physics instruction into their classrooms, in turn opening more equitable, clear, and viable pathways for students into STEM education and careers.

The IPaSS Partnership Program puts education researchers, university physics instructors, and teacher professional development staff at the University of Illinois at Urbana-Champaign (U of I) in collaboration with in-service high school physics teachers to adapt university physics curricula and pedagogies to fit the context of their high school classrooms. The project will adapt two key components of U of I's undergraduate physics curriculum for high school use by: (1) using a web-based "flipped" platform, smartPhysics, which contains online pre-lectures, pre-labs and homework and (2) using research-based physics lab activities targeting scientific skill development, utilizing the iOLab wireless lab system - a compact device that contains all sensors necessary for hundreds of physics labs with an interface that supports quick data collection and analysis. The program adopts two PD elements that support sustained, in-depth teacher engagement: (1) incremental expansion of the pool of teachers to a cohort of 40 by the end of the project, with a range of physics teaching assignments and work collaboratively with a physics teaching community to develop advanced physics instruction for their particular classroom contexts, (2) involvement in a combination of intensive summer PD sessions containing weekly PD meetings with university project staff that value teachers' agency in designing their courses, and the formation of lasting professional relationships between teachers. The IPaSS Partnership Program also addresses needs for guidance, support and resources as teachers adapt to the shifts in Advanced Placement (AP) Physics standards. The recent revised high school physics curriculum that emphasizes deep conceptual understanding of central physical principles and scientific practices will be learned through the inquiry-based laboratory work. The planned research will address three central questions: (1) How does IPaSS impact teachers' practice? (2) Does the program encourage student proficiency in physics and their pursuit of STEM topics beyond the course? (3) What aspects of the U of I curricula must be adapted to the structures of the high school classroom to best serve high school student populations? To answer these questions, several streams of data will be collected: Researchers will collect instructional artifacts and video recordings from teachers' PD activities and classroom teaching throughout the year to trace the development of teachers' pedagogical and instructional development. The students of participating teachers will be surveyed on their physics knowledge, attitudes, and future career aspirations before and after their physics course, video recordings of student groupwork will be made, and student written coursework and grades will be collected. Finally, high school students will be surveyed post-graduation about their STEM education and career trajectories. The result of this project will be a community of Illinois physics teachers who are engaged in continual development of advanced high school physics curricula, teacher-documented examples of these curricula suited for a range of school and classroom contexts, and a research-based set of PD principles aimed at supporting students' future STEM opportunities and engagement.

PROJECT KEYWORDS

Project Materials