Empowering Teachers to See and Support Student Use of Crosscutting Concepts in the Life Sciences

The project focuses on the development of formative assessment tools that highlight assets of students’ use of crosscutting concepts (CCCs) while engaged in science and engineering practices in grades 9-12 Life Sciences.

Full Description: 

The project focuses on the development of formative assessment tools that highlight assets of students’ use of crosscutting concepts (CCCs) while engaged in science and engineering practices in grades 9-12 Life Sciences. In response to the calls set forth by the Framework for K-12 Science Education and Next Generation Science Standards (NGSS), the field has most successfully researched and developed assessment tools for disciplinary core ideas and the science and engineering practices. The CCCs, which serve as the connective links across science domains, however, remain more abstractly addressed. Presently, science educators have little guidance for what student use of CCCs looks like or how to assess and nurture such use. This project, with its explicit attention to the CCCs, advances true three-dimensional scientific understanding in both research and the classroom. Leveraging formative assessment as a vehicle for student and teacher development taps into proven successful instructional strategies (e.g., sharing visions of successful learning, descriptive feedback, self-assessment), while also advancing formative assessment, itself, by strengthening and illustrating how these strategies may focus on the CCCs. Further, a strengths-based approach will center culturally related differences in students’ use of CCCs to achieve more equitable opportunities to engage in classroom sensemaking practices. This work impacts the field of science education by 1) enabling a more thorough realization of NGSS ideals, 2) strengthening teachers’ abilities to identify diverse demonstrations of CCCs, and 3) showcasing the impact of novel classroom tools to sharpen teachers’ abilities to solicit, notice, and act upon evidence of emergent student scientific thinking within their instructional practices.

This design-based implementation research project will engage teachers in the iterative development and refinement of rubrics that support three-dimensional science understanding through formative assessment. The high school biology classrooms that compose the study site are engaged in ambitious science teaching-inspired instruction. An inductive, bottom-up approach (Brookhart, 2013) will allow researchers, teachers, and students to co-construct rubrics. Analysis of classroom observations, artifact collection, interviews with teachers and students, and expert-panel ratings will produce a rubric for each CCC that integrates relevant science and engineering practices and is applicable across a range of disciplinary core ideas. These rubrics will illustrate progressions of increasingly advanced use of each of the CCCs, to guide the construction, pursuit, and assessment of learning goals. There will be two design cycles that allow for the collection of validity evidence and produce rubrics with the potential for broad application by educators. Complementary lines of qualitative and quantitative (i.e., psychometric) analysis will contribute to development and validation of the rubrics and their formative uses. Project inquiry will focus on 1) how the rubrics can represent CCCs for key disciplinary practices, 2) the extent to which teachers’ and students’ understandings of the rubrics align, and 3) how implementation of the rubrics impacts teachers’ and students’ understandings of the CCCs.

Project Materials

There is no content in this group.