Disciplinary Content Knowledge

Validation of the Equity and Access Rubrics for Mathematics Instruction (VEAR-MI)

The main goal of this project is to validate a set of rubrics that attend to the existence and the quality of instructional practices that support equity and access in mathematics classes. The project team will clarify the relationships between the practices outlined in the rubrics and aspects of teachers' perspectives and knowledge as well as student learning outcomes.

Award Number: 
1908481
Funding Period: 
Mon, 07/15/2019 to Fri, 06/30/2023
Full Description: 

High-quality mathematics instruction remains uncommon and opportunities for students to develop the mathematical understanding are not distributed equally. This is particularly true for students of color and students for whom English is not their first language. While educational research has made progress in identifying practices that are considered high-quality, little attention has been given to specific instructional practices that support historically marginalized groups of students particularly as they participate in more rigorous mathematics. The main goal is to validate a set of rubrics that attend to the existence and the quality of instructional practices that support equity and access in mathematics classes. In addition, the project team will clarify the relationships between the practices outlined in the rubrics and aspects of teachers' perspectives and knowledge as well as student learning outcomes.

This project will make use of two existing large-scale datasets focusing on mathematics teachers to develop rubrics on mathematics instructional quality. The datasets include nearly 3,000 video-recorded mathematics lessons and student achievement records from students in Grades 3 through 8. The four phases of this research and development project include training material development, an observation and rubric generalizability study, a coder reliability study, and structural analysis. Data analysis plans involve case studies, exploratory and confirmatory factor analyses, and cognitive interviews. 

Invigorating Statistics Teacher Education Through Professional Online Learning (InSTEP)

This project seeks to strengthen the teaching of statistics and data science in grades 6-12 through the design and implementation of an online professional learning environment for teachers. The professional learning environment aims to support in-service teachers in developing stronger content knowledge related to statistics, and knowledge of how to effectively teach statistics in their classrooms.

Project Email: 
Award Number: 
1908760
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Project Evaluator: 
Full Description: 

Implementing meaningful statistics education in middle and high schools has been a persistent challenge in the United States. Statistics and data science are critical domains for STEM careers and the general data literacy of the citizenry. This project seeks to strengthen the teaching of statistics and data science in grades 6-12 through the design and implementation of an online professional learning environment for teachers. The professional learning environment aims to support in-service teachers in developing stronger content knowledge related to statistics, and knowledge of how to effectively teach statistics in their classrooms. The project will also evaluate a model of professional development that integrates personalized online learning and microcredentialing (earning small-scale certifications) to better understand its effectiveness in supporting teacher learning. The project will draw from previous work to assemble online modules that engage teachers in doing high-quality statistics and data science tasks, the analysis of video of teachers' and students' work with those tasks, learning a pedagogical framework for teachers to implement the tasks, and exploring guidelines for identifying and developing high-quality statistics and data science tasks. The project will study teacher learning through the use of these modules, and the pathways that teachers choose through them to understand the effectiveness of the model.

The project builds on previous work by the investigators to develop research-based teacher professional development modules that support learning about statistics and statistics education in grades 6-12. Materials currently developed include a series of microcredentials with design features consistent with research on effective teacher professional development. They include opportunities for teachers to engage with statistics content appropriate to the target grade levels they teach, active learning opportunities that engage them with teachers in similar contexts, and a coherent focus that builds on the knowledge and experience teachers bring to the table. The project will take place in iterative phases, beginning with focus groups of middle and high school teachers and district leaders based on first drafts of the materials. This will be followed by cognitive interviews with teachers who engage in the microcredential ecosystem which will inform modifications to the system. Following this phase, cohorts of teachers (25 in the first cohort, 75 in the second) will participate in scaffolded professional development engagement with the materials, and will be assessed with respect to changes in their knowledge and practice. The project will assess changes in teacher knowledge using reliable and valid measures of statistics knowledge and practice. Data will be collected from the online platform regarding teacher engagement and usage to better understand usage and pathways through the materials. The professional learning platform will be made available as a free and open online source at the close of the project.

Alternative video text
Alternative video text: 

Professional Development for Teaching and Learning about Energy and Equity in High School Physics (Collaborative Research: Scherr)

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow. The project will create a model for secondary science teacher professional development that integrates science concepts with equity education.

Lead Organization(s): 
Award Number: 
1907815
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow, an important scientific concept with economic and social implications. This energy learning is the foundation for informed decision-making about sustainable and just use of energy resources. Energy issues are not only issues of science and technology, but must be integrated with civics, history, economics, sociology, psychology, and politics to understand and solve modern energy problems. Placing the scientific concept of energy in this social context presents an opportunity to advance science education as equitable and culturally responsive.

This project will create a model for secondary science teacher professional development that integrates science concepts with equity education. This model promotes a key epistemological issue: that science concepts are not culture-free or socially neutral ideas, but rather are concepts created and sustained by people in specific times and places for the purposes of (1) addressing specific social needs and (2) empowering people or groups of people. The two major components of the project are (1) the professional development experience, including both an intensive in-person summer workshop and an online professional learning community, and (2)an energy and equity portal, including an instructional materials library, an action research exchange, and a community forum for teacher discussions. The portal will provide technical resources to support the PLC, including support for sharing instructional materials and reporting on action research. The research plan includes exploratory, development and application phases. The researchers will identify teacher learning in the first iteration of PD, collect and analyze the instructional artifacts to inform how teacher engage with, participate in, and build an understanding energy as a historically and politically situated science concept. A team of scholar-videographers will observe, taking real-time field notes and making daily memos. The research team will use the instructional artifacts, video recordings, field notes, and memos as a basis for analysis through the next academic year. The result will be a nationally significant community of teacher-leaders and library of research-tested instructional materials that are responsive to students' scientific ideas, relevant to socio-political concerns about energy sustainability, respectful of students' cultures, and open to all students no matter their cultural background. Teachers participating in the project will learn to explain how scientific concepts of energy reflect culturally specific values, analyze socio-politically relevant energy scenarios, learn the historic and present-day inequities in the energy industry and in science participation, and be supported in preparing instruction for secondary students that is culturally responsive and relevant to their students' communities.

Professional Development for Teaching and Learning about Energy and Equity in High School Physics (Collaborative Research: Mason)

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow. The project will create a model for secondary science teacher professional development that integrates science concepts with equity education.

Partner Organization(s): 
Award Number: 
1907950
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow, an important scientific concept with economic and social implications. This energy learning is the foundation for informed decision-making about sustainable and just use of energy resources. Energy issues are not only issues of science and technology, but must be integrated with civics, history, economics, sociology, psychology, and politics to understand and solve modern energy problems. Placing the scientific concept of energy in this social context presents an opportunity to advance science education as equitable and culturally responsive.

This project will create a model for secondary science teacher professional development that integrates science concepts with equity education. This model promotes a key epistemological issue: that science concepts are not culture-free or socially neutral ideas, but rather are concepts created and sustained by people in specific times and places for the purposes of (1) addressing specific social needs and (2) empowering people or groups of people. The two major components of the project are (1) the professional development experience, including both an intensive in-person summer workshop and an online professional learning community, and (2)an energy and equity portal, including an instructional materials library, an action research exchange, and a community forum for teacher discussions. The portal will provide technical resources to support the PLC, including support for sharing instructional materials and reporting on action research. The research plan includes exploratory, development and application phases. The researchers will identify teacher learning in the first iteration of PD, collect and analyze the instructional artifacts to inform how teacher engage with, participate in, and build an understanding energy as a historically and politically situated science concept. A team of scholar-videographers will observe, taking real-time field notes and making daily memos. The research team will use the instructional artifacts, video recordings, field notes, and memos as a basis for analysis through the next academic year. The result will be a nationally significant community of teacher-leaders and library of research-tested instructional materials that are responsive to students' scientific ideas, relevant to socio-political concerns about energy sustainability, respectful of students' cultures, and open to all students no matter their cultural background. Teachers participating in the project will learn to explain how scientific concepts of energy reflect culturally specific values, analyze socio-politically relevant energy scenarios, learn the historic and present-day inequities in the energy industry and in science participation, and be supported in preparing instruction for secondary students that is culturally responsive and relevant to their students' communities.

Professional Development Supports for Teaching Bioinformatics through Mobile Learning

This project will investigate the professional development supports needed for teaching bioinformatics at the high school level. The project team will work with biology and mathematics teachers to co-design instructional modules to engage students with core bioinformatics concepts and computational literacies, by focusing on local community health issues supported through mobile learning activities.

Lead Organization(s): 
Award Number: 
1812738
Funding Period: 
Sat, 09/01/2018 to Mon, 02/28/2022
Full Description: 

Bioinformatics is an emerging area of research that develops new knowledge through computational analysis of vast biological and biomedical data. This project will investigate the professional development supports needed for teaching bioinformatics at the high school level. Building from a robust literature in professional development design research, project team will work with biology and mathematics teachers to co-design instructional modules to engage students with core bioinformatics concepts and computational literacies, by focusing on local community health issues supported through mobile learning activities. The overarching goal of the project is to help create an engage population of informatics-informed students who are capable of critically analyzing information and able to solve local problems related to their health and well-being.

The project team will use a design-based implementation research approach to identify the curricular and instructional supports needed to achieve the teaching and learning goals through iterative project revisions, employing mixed methods to evaluate teacher and student learning processes and outcomes. Teachers from local high needs schools will participate in a three-week summer workshop, where they will learn about state-of-the-art bioinformatics content, project-based pedagogies that promote computational literacy, and strategies integrate mobile technologies into instruction.  They will implement the instructional units during the year, and the summer workshop will be revised and delivered to an expanded cohort of teachers the following summer. The data collection and analysis conducted on teachers' enactment of these modules will reveal the professional development and implementation areas needed to support particular populations, specifically underrepresented groups in STEM, to engage with bioinformatics learning and take authentic action on local community issues.

Supporting Teachers in Responsive Instruction for Developing Expertise in Science (Collaborative Research: Linn)

This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.

Partner Organization(s): 
Award Number: 
1813713
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Many teachers want to adapt their instruction to meet student learning needs, yet lack the time to regularly assess and analyze students' developing understandings. The Supporting Teachers in Responsive Instruction for Developing Expertise in Science (STRIDES) project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. In this project students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. Advanced technologies (including natural language processing) will be used to assess students' written responses and summaries their science understanding in real-time. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses. Research will examine how teachers make use of the feedback and suggestions to customize their instruction. Further we will study how these instructional changes help students develop coherent understanding of complex science topics and ability to make sense of models and graphs. The findings will be used to refine the tools that analyze the student essays and generate the summaries; improve the research-based instructional suggestions in the planning tool; and strengthen the online interface for teachers. The tools will be incorporated into open-source, freely available online curriculum units. STRIDES will directly benefit up to 30 teachers and 24,000 students from diverse school settings over four years.

Leveraging advances in natural language processing methods, the project will analyze student written explanations to provide fine-grained summaries to teachers about strengths and weaknesses in student work. Based on the linguistic analysis and logs of student navigation, the project will then provide instructional customizations based on learning science research, and study how teachers use them to improve student progress. Researchers will annually conduct at least 10 design or comparison studies, each involving up to 6 teachers and 300-600 students per year. Insights from this research will be captured in automated scoring algorithms, empirically tested and refined customization activities, and data logging techniques that can be used by other research and curriculum design programs to enable teacher customization.

Building Middle School Students' Understanding of Heredity and Evolution

This project will develop and test the impact of heredity and evolution curriculum units for middle school grades that are aligned with the Next Generation Science Standards (NGSS). The project will advance science teaching by investigating the ways in which two curriculum units can be designed to incorporate science and engineering practices, cross-cutting concepts, and disciplinary core ideas, the three dimensions of science learning described by the NGSS. The project will also develop resources to support teachers in implementation of the new modules.

Lead Organization(s): 
Award Number: 
1814194
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

This project will develop and test the impact of heredity and evolution curriculum units for middle school grades that are aligned with the Next Generation Science Standards (NGSS). The project will advance science teaching by investigating the ways in which two curriculum units can be designed to incorporate science and engineering practices, cross-cutting concepts, and disciplinary core ideas, the three dimensions of science learning described by the NGSS. The project will also develop resources to support teachers in implementation of the new modules. The planned research will also examine whether student understanding of evolution depends on the length and time of exposure to learning about heredity prior to learning about evolution.

This Early Stage Design and Development project will develop two new 3-week middle school curriculum units, with one focusing on heredity and the other focusing on evolution. The units will include embedded formative and summative assessment measures and online teacher support materials. These units will be developed as part of a curriculum learning progression that will eventually span the elementary grades through high school. This curriculum learning progression will integrate heredity, evolution, data analysis, construction of scientific explanations, evidence-based argumentation, pattern recognition, and inferring cause and effect relationships. To inform development and iterative revisions of the units, the project will conduct nation-wide beta and pilot tests, selecting schools with broad ranges of student demographics and geographical locations. The project will include three rounds of testing and revision of both the student curriculum and teacher materials. The project will also investigate student understanding of evolution in terms of how their understanding is impacted by conceptual understanding of heredity. The research to be conducted by this project is organized around three broad research questions: (a) In what ways can two curriculum units be designed to incorporate the three dimensions of science learning and educative teacher supports to guide students' conceptual understanding of heredity and evolution? (b) To what extent does student understanding of evolution depend on the length and timing of heredity lessons that preceded an evolution unit? And (c) In what ways do students learn heredity and evolution?

Supporting Teachers in Responsive Instruction for Developing Expertise in Science (Collaborative Research: Riordan)

This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.

Lead Organization(s): 
Award Number: 
1812660
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Many teachers want to adapt their instruction to meet student learning needs, yet lack the time to regularly assess and analyze students' developing understandings. The Supporting Teachers in Responsive Instruction for Developing Expertise in Science (STRIDES) project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. In this project students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. Advanced technologies (including natural language processing) will be used to assess students' written responses and summaries their science understanding in real-time. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses. Research will examine how teachers make use of the feedback and suggestions to customize their instruction. Further we will study how these instructional changes help students develop coherent understanding of complex science topics and ability to make sense of models and graphs. The findings will be used to refine the tools that analyze the student essays and generate the summaries; improve the research-based instructional suggestions in the planning tool; and strengthen the online interface for teachers. The tools will be incorporated into open-source, freely available online curriculum units. STRIDES will directly benefit up to 30 teachers and 24,000 students from diverse school settings over four years.

Leveraging advances in natural language processing methods, the project will analyze student written explanations to provide fine-grained summaries to teachers about strengths and weaknesses in student work. Based on the linguistic analysis and logs of student navigation, the project will then provide instructional customizations based on learning science research, and study how teachers use them to improve student progress. Researchers will annually conduct at least 10 design or comparison studies, each involving up to 6 teachers and 300-600 students per year. Insights from this research will be captured in automated scoring algorithms, empirically tested and refined customization activities, and data logging techniques that can be used by other research and curriculum design programs to enable teacher customization.

Enhancing Teacher and Student Understanding of Engineering in K-5 Bilingual Programs

This mixed-method exploratory study will examine how bilingual teachers working in elementary schools in Massachusetts and Puerto Rico understand the role and skills of engineers in society. In turn, it will examine how teachers adapt existing engineering lessons so that those activities and concepts are more culturally and linguistically accessible to their students.

Lead Organization(s): 
Award Number: 
1814258
Funding Period: 
Mon, 10/01/2018 to Thu, 09/30/2021
Full Description: 

Engineering is part of everyone's local community and daily activities yet opportunities to learn about engineering are often absent from elementary school classrooms. Further, little is known about how teachers' and students' conceptions of engineering relate to aspects of their local community such as language and culture. Knowing more about this is important because students' perceptions of mismatch between their personal culture and the engineering field contributes to the continued underrepresentation of minorities in the profession. This mixed-method exploratory study will examine how bilingual teachers working in elementary schools in Massachusetts and Puerto Rico understand the role and skills of engineers in society. In turn, it will examine how teachers adapt existing engineering lessons so that those activities and concepts are more culturally and linguistically accessible to their students.

Consistent with the aims of the DRK-12 program, this project will advance understanding of how engineering education materials can be adapted to the characteristics of teachers, students, and the communities that they reside in. Further, its focus on bilingual classrooms will bring new perspectives to characterizations of the engineering field and its role in different cultures and societies. Over a three-year period, the team will investigate these issues by collecting data from 24 teachers (12 from each location). Data will be collected via surveys, interviews, discussion of instructional examples, videos of teachers' classroom instruction and analysis of artifacts such as teachers' lesson plans. Teachers will collaborate and function as a professional co-learning community called instructional rounds by participating and providing feedback synchronously in face-to-face settings and via the use of digital apps. Project findings can lead to teaching guidelines, practices, and briefs that inform efforts to successfully integrate bilingual engineering curriculum at the elementary grades. This work also has the potential to create professional development models of success for K-5 teachers in bilingual programs and enhance engineering teaching strategies and methods at these early grade levels.

Engaging High School Students in Computer Science with Co-Creative Learning Companions (Collaborative Research: Magerko)

This research investigates how state-of-the-art creative and pedagogical agents can improve students' learning, attitudes, and engagement with computer science. The project will be conducted in high school classrooms using EarSketch, an online computer science learning environments that engages learners in making music with JavaScript or Python code.

Award Number: 
1814083
Funding Period: 
Sat, 09/15/2018 to Wed, 08/31/2022
Full Description: 
This research investigates how state-of-the-art creative and pedagogical agents can improve students' learning, attitudes, and engagement with computer science. The project will be conducted in high school classrooms using EarSketch, an online computer science learning environments that engages over 160,000 learners worldwide in making music with JavaScript or Python code. The researchers will build the first co-creative learning companion, Cai, that will scaffold students with pedagogical strategies that include making use of learner code to illustrate abstraction and modularity, suggesting new code to scaffold new concepts, providing help and hints, and explaining its decisions. This work will directly address the national need to develop computing literacy as a core STEM skill.
 
The proposed work brings together an experienced interdisciplinary team to investigate the hypothesis that adding a co-creative learning companion to an expressive computer science learning environment will improve students' computer science learning (as measured by code sophistication and concept knowledge), positive attitudes towards computing (self-efficacy and motivation), and engagement (focused attention and involvement during learning). The iterative design and development of the co-creative learning companion will be based on studies of human collaboration in EarSketch classrooms, the findings in the co-creative literature and virtual agents research, and the researchers' observations of EarSketch use in classrooms. This work will address the following research questions: 1) What are the foundational pedagogical moves that a co-creative learning companion for expressive programming should perform?; 2) What educational strategies for a co-creative learning companion most effectively scaffold learning, favorable attitudes toward computing, and engagement?; and 3) In what ways does a co-creative learning companion in EarSketch increase computer science learning, engagement, and positive attitudes toward computer science when deployed within the sociocultural context of a high school classroom? The proposed research has the potential to transform our understanding of how to support student learning in and broaden participation through expressive computing environments.

Pages

Subscribe to Disciplinary Content Knowledge