Content Knowledge

Supporting Teacher Understanding of Emergent Computational Thinking in Early Elementary Students

This project explores how to help teachers identify and support early elementary children’s emergent computational thinking. The project will engage researchers, professional development providers, and early elementary teachers (K-2) in a collaborative research and development process to design a scalable professional development experience for grade K-2 teachers.

Lead Organization(s): 
Award Number: 
2101547
Funding Period: 
Wed, 09/01/2021 to Sat, 08/31/2024
Full Description: 

There is an increasing focus and interest in teaching computer science and computational thinking in early elementary school. The project will engage researchers, professional development providers, and early elementary teachers (K-2) in a collaborative research and development process to design a scalable professional development experience for grade K-2 teachers. The project will field test and conduct research on the artifacts, facilitation strategies, and modes of interaction that effectively prepare K-2 teachers to learn about their students’ emergent use of computational thinking strategies. The teachers will collaborate using an online platform for sharing resources, and the project will also study how the online platform can help to reach and support more teachers. The teachers’ learning will be supported by instructional coaches who will help the teachers to integrate computer science into their teaching, and to interpret evidence of their students’ understanding of computational thinking.

The project explores how to help teachers identify and support early elementary children’s emergent computational thinking. The professional learning model for teachers includes a community of practice supported by an online platform and a coach with expertise in computational thinking. The work leverages models for professional development in early grades mathematics. The project focuses on creating systems and conditions for scalable professional learning including coherence, coaching, teacher networks, and engagement with school and district leadership. The research questions are: (1) What kind of professional development and guidance do teachers need to identify and support emergent computational thinking development in young students’ language and work process? (2) What kind of professional development and guidance do teachers need to identify emergent computational thinking development in young students’ work products? (3) How can a scalable professional learning system help teachers understand the development of emergent computational thinking in K-2 students? The teachers will develop lessons, use them with students, and reflect about their work with the coach and the other teachers in their community of practice. The data collection and analysis include interviews, surveys, observations, and documentation from the online platform to understand teachers’ professional learning and development.

Leveraging the Power of Reflection and Visual Representation in Middle-Schoolers' Learning During and After an Informal Science Experience (Collaborative Research: Uttal)

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips.

Lead Organization(s): 
Award Number: 
2115905
Funding Period: 
Fri, 10/01/2021 to Tue, 09/30/2025
Full Description: 

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential science, technology, engineering, and mathematics (STEM) learning from short duration experiences such as field trips. Although informal learning experiences can greatly contribute to interest in and knowledge of science, there is a shared concern among educators and researchers that students may have difficulty recalling and using scientific information and practices emphasized during these experiences, even though doing so would further their science learning. Nonetheless, science learning is rarely, if ever, a "one-shot deal." Children acquire knowledge about science cumulatively across different contexts and activities. Therefore, it is important that informal science learning institutions identify effective practices that support the consolidation of learning and memory from exhibit experiences to foster portable, usable knowledge across contexts, such as from informal science learning institutions, to classrooms, and homes. To this end, this Research in Service to Practice project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences. The project promises to increase learning for the 9,000+ 5th and 6th grade students from across the rurality and growing diversity of the state of Maine who annually participate in LabVenture, a 2.5-hour exploration of the Gulf of Maine ecosystem at Gulf of Maine Research Institute. The research will provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

The project is grounded in the idea that visual representations, including drawings, can both enhance science learning and encourage reflection on doing science that can support extension of that learning beyond a singular informal science experience. The project uses design-based research to address the following research questions: (1) Does reflection during an informal science learning experience promote students’ retention and subsequent use of science information and practices that are part of the experience? (2) Does interpreting and constructing visual representations, such as drawings, improve students’ understanding and retention of information, and if so, how and when?  and (3) Does combining visual representations and narrative reflections confer benefits on students’ science learning and engagement in science practices both during the informal learning experience, and later in their classrooms and at home? These questions will be pursued in collaboration with practitioners (both informal educators and classroom teachers) and a diverse team of graduate and undergraduate student researchers. Approximately 600 student groups (roughly 3000 individual students) will be observed during the LabVenture experience, with further data collection involving a portion of these students at school and at home. The project will yield resources and video demonstrations of field-tested, empirically based practices that promote engagement with visual representations and reflection, and science understandings that can travel within students' learning ecosystem. In support of broadening participation, the undergraduate/graduate student researchers will gain wide understanding and experience connecting research to practice and communicating science to academic and nonacademic audiences.

Leveraging the Power of Reflection and Visual Representation in Middle-Schoolers' Learning During and After an Informal Science Experience (Collaborative Research: Dickes)

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips.

Award Number: 
2115603
Funding Period: 
Fri, 10/01/2021 to Tue, 09/30/2025
Full Description: 

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential science, technology, engineering, and mathematics (STEM) learning from short duration experiences such as field trips. Although informal learning experiences can greatly contribute to interest in and knowledge of science, there is a shared concern among educators and researchers that students may have difficulty recalling and using scientific information and practices emphasized during these experiences, even though doing so would further their science learning. Nonetheless, science learning is rarely, if ever, a "one-shot deal." Children acquire knowledge about science cumulatively across different contexts and activities. Therefore, it is important that informal science learning institutions identify effective practices that support the consolidation of learning and memory from exhibit experiences to foster portable, usable knowledge across contexts, such as from informal science learning institutions, to classrooms, and homes. To this end, this Research in Service to Practice project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences. The project promises to increase learning for the 9,000+ 5th and 6th grade students from across the rurality and growing diversity of the state of Maine who annually participate in LabVenture, a 2.5-hour exploration of the Gulf of Maine ecosystem at Gulf of Maine Research Institute. The research will provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

The project is grounded in the idea that visual representations, including drawings, can both enhance science learning and encourage reflection on doing science that can support extension of that learning beyond a singular informal science experience. The project uses design-based research to address the following research questions: (1) Does reflection during an informal science learning experience promote students’ retention and subsequent use of science information and practices that are part of the experience? (2) Does interpreting and constructing visual representations, such as drawings, improve students’ understanding and retention of information, and if so, how and when?  and (3) Does combining visual representations and narrative reflections confer benefits on students’ science learning and engagement in science practices both during the informal learning experience, and later in their classrooms and at home? These questions will be pursued in collaboration with practitioners (both informal educators and classroom teachers) and a diverse team of graduate and undergraduate student researchers. Approximately 600 student groups (roughly 3000 individual students) will be observed during the LabVenture experience, with further data collection involving a portion of these students at school and at home. The project will yield resources and video demonstrations of field-tested, empirically based practices that promote engagement with visual representations and reflection, and science understandings that can travel within students' learning ecosystem. In support of broadening participation, the undergraduate/graduate student researchers will gain wide understanding and experience connecting research to practice and communicating science to academic and nonacademic audiences.

Leveraging the Power of Reflection and Visual Representation in Middle-Schoolers' Learning During and After an Informal Science Experience (Collaborative Research: Haden)

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips.

Lead Organization(s): 
Award Number: 
2115610
Funding Period: 
Fri, 10/01/2021 to Tue, 09/30/2025
Full Description: 

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential science, technology, engineering, and mathematics (STEM) learning from short duration experiences such as field trips. Although informal learning experiences can greatly contribute to interest in and knowledge of science, there is a shared concern among educators and researchers that students may have difficulty recalling and using scientific information and practices emphasized during these experiences, even though doing so would further their science learning. Nonetheless, science learning is rarely, if ever, a "one-shot deal." Children acquire knowledge about science cumulatively across different contexts and activities. Therefore, it is important that informal science learning institutions identify effective practices that support the consolidation of learning and memory from exhibit experiences to foster portable, usable knowledge across contexts, such as from informal science learning institutions, to classrooms, and homes. To this end, this Research in Service to Practice project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences. The project promises to increase learning for the 9,000+ 5th and 6th grade students from across the rurality and growing diversity of the state of Maine who annually participate in LabVenture, a 2.5-hour exploration of the Gulf of Maine ecosystem at Gulf of Maine Research Institute. The research will provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

The project is grounded in the idea that visual representations, including drawings, can both enhance science learning and encourage reflection on doing science that can support extension of that learning beyond a singular informal science experience. The project uses design-based research to address the following research questions: (1) Does reflection during an informal science learning experience promote students’ retention and subsequent use of science information and practices that are part of the experience? (2) Does interpreting and constructing visual representations, such as drawings, improve students’ understanding and retention of information, and if so, how and when?  and (3) Does combining visual representations and narrative reflections confer benefits on students’ science learning and engagement in science practices both during the informal learning experience, and later in their classrooms and at home? These questions will be pursued in collaboration with practitioners (both informal educators and classroom teachers) and a diverse team of graduate and undergraduate student researchers. Approximately 600 student groups (roughly 3000 individual students) will be observed during the LabVenture experience, with further data collection involving a portion of these students at school and at home. The project will yield resources and video demonstrations of field-tested, empirically based practices that promote engagement with visual representations and reflection, and science understandings that can travel within students' learning ecosystem. In support of broadening participation, the undergraduate/graduate student researchers will gain wide understanding and experience connecting research to practice and communicating science to academic and nonacademic audiences.

Reducing Racially Biased Beliefs by Fostering a Complex Understanding of Human Genetics Research in High School Biology Students (Collaborative Research: Donovan)

The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs. The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.

Lead Organization(s): 
Award Number: 
2100864
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Genetic essentialism is the belief that people of the same race share genes that make them physically, cognitively, and behaviorally uniform, and thus different from other races. The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs and minimize the threat of backfiring (unintentionally increasing belief in essentialism). The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.  Project research findings, learning materials, and professional development institutes will be made available to educators and researchers across the country who desire to teach genetics to reduce racial prejudice.

To prepare for the research, the project will revise and augment the project’s existing HGL curriculum and professional development institutes.  In year one, the project will develop new versions of the HGL interventions. Using these materials, the project will train teachers to implement new versions of the HGL interventions in their classrooms. Researchers will video and audio record a sample of teachers and students as they learn. These data will be analyzed qualitatively to: (1) examine how the conceptual change of genetic essentialism was promoted or impeded by interactions between teachers, students, and the materials; and (2) identify and corroborate general factors undergirding the backfiring effect.  Knowledge constructed through these studies will be used to revise the HGL interventions and PDIs.  In year three, using the revised versions of the HGL intervention, the project will conduct a cluster randomized trial (CRT). The CRT will compare the HGL interventions to a well-defined “business as usual” genetics curriculum, using a statistically powerful and geographically diverse sample (N = 135 teachers, N = 16,200 students, from 33 states). Using data from the CRT, the project will identify classrooms where the interventions reduced essentialism, had no effect on it, and where it backfired. Then, the project will use stimulated recall methods to interview the teachers and students in those classrooms to make sense of factors that contributed to these outcomes. The project will use this information to develop the final version of the HGL interventions and PDI materials. By the end of year four, the project will have trained an additional 90-100 teachers to use HGL interventions, reaching an additional 10,800-12,000 students, in at least 33 different states.

Reducing Racially Biased Beliefs by Fostering a Complex Understanding of Human Genetics Research in High School Biology Students (Collaborative Research: Duncan)

The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs. The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2100876
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Genetic essentialism is the belief that people of the same race share genes that make them physically, cognitively, and behaviorally uniform, and thus different from other races. The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs and minimize the threat of backfiring (unintentionally increasing belief in essentialism). The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.  Project research findings, learning materials, and professional development institutes will be made available to educators and researchers across the country who desire to teach genetics to reduce racial prejudice.

To prepare for the research, the project will revise and augment the project’s existing HGL curriculum and professional development institutes.  In year one, the project will develop new versions of the HGL interventions. Using these materials, the project will train teachers to implement new versions of the HGL interventions in their classrooms. Researchers will video and audio record a sample of teachers and students as they learn. These data will be analyzed qualitatively to: (1) examine how the conceptual change of genetic essentialism was promoted or impeded by interactions between teachers, students, and the materials; and (2) identify and corroborate general factors undergirding the backfiring effect.  Knowledge constructed through these studies will be used to revise the HGL interventions and PDIs.  In year three, using the revised versions of the HGL intervention, the project will conduct a cluster randomized trial (CRT). The CRT will compare the HGL interventions to a well-defined “business as usual” genetics curriculum, using a statistically powerful and geographically diverse sample (N = 135 teachers, N = 16,200 students, from 33 states). Using data from the CRT, the project will identify classrooms where the interventions reduced essentialism, had no effect on it, and where it backfired. Then, the project will use stimulated recall methods to interview the teachers and students in those classrooms to make sense of factors that contributed to these outcomes. The project will use this information to develop the final version of the HGL interventions and PDI materials. By the end of year four, the project will have trained an additional 90-100 teachers to use HGL interventions, reaching an additional 10,800-12,000 students, in at least 33 different states.

Reducing Racially Biased Beliefs by Fostering a Complex Understanding of Human Genetics Research in High School Biology Students (Collaborative Research: Wedow)

The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs. The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2100959
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Genetic essentialism is the belief that people of the same race share genes that make them physically, cognitively, and behaviorally uniform, and thus different from other races. The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs and minimize the threat of backfiring (unintentionally increasing belief in essentialism). The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.  Project research findings, learning materials, and professional development institutes will be made available to educators and researchers across the country who desire to teach genetics to reduce racial prejudice.

To prepare for the research, the project will revise and augment the project’s existing HGL curriculum and professional development institutes.  In year one, the project will develop new versions of the HGL interventions. Using these materials, the project will train teachers to implement new versions of the HGL interventions in their classrooms. Researchers will video and audio record a sample of teachers and students as they learn. These data will be analyzed qualitatively to: (1) examine how the conceptual change of genetic essentialism was promoted or impeded by interactions between teachers, students, and the materials; and (2) identify and corroborate general factors undergirding the backfiring effect.  Knowledge constructed through these studies will be used to revise the HGL interventions and PDIs.  In year three, using the revised versions of the HGL intervention, the project will conduct a cluster randomized trial (CRT). The CRT will compare the HGL interventions to a well-defined “business as usual” genetics curriculum, using a statistically powerful and geographically diverse sample (N = 135 teachers, N = 16,200 students, from 33 states). Using data from the CRT, the project will identify classrooms where the interventions reduced essentialism, had no effect on it, and where it backfired. Then, the project will use stimulated recall methods to interview the teachers and students in those classrooms to make sense of factors that contributed to these outcomes. The project will use this information to develop the final version of the HGL interventions and PDI materials. By the end of year four, the project will have trained an additional 90-100 teachers to use HGL interventions, reaching an additional 10,800-12,000 students, in at least 33 different states.

Using Natural Language Processing to Inform Science Instruction (Collaborative Research: Linn)

This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. The project will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic.

Partner Organization(s): 
Award Number: 
2101669
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Often, middle school science classes do not benefit from participation of underrepresented students because of language and cultural barriers. This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. This work continues a partnership among the University of California, Berkeley, Educational Testing Service, and science teachers and paraprofessionals from six middle schools enrolling students from diverse racial, ethnic, and language groups whose cultural experiences may be neglected in science instruction. The partnership will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic. The partnership leverages a web-based platform to implement adaptive guidance designed by teachers that feature dialog and peer interaction. Further, the platform features teacher tools that can detect when a student needs additional help and alert the teacher. Teachers using the technology will be able to track and respond to individual student ideas, especially from students who would not often participate because of language and cultural barriers.

This project develops AI-based technology to help science teachers increase their impact on student science learning. The technology is aimed to provide accurate analysis of students' initial ideas and adaptive guidance that gets each student started on reconsidering their ideas and pursuing deeper understanding. Current methods in automated scoring primarily focus on detecting incorrect responses on test questions and estimating the overall knowledge level in a student explanation. This project leverages advances in natural language processing (NLP) to identify the specific ideas in student explanations for open-ended science questions. The investigators will conduct a comprehensive research program that pairs new NLP-based AI methods for analyzing student ideas with adaptive guidance that, in combination, will empower students to use their ideas as starting points for improving science understanding. To evaluate the idea detection process, the researchers will conduct studies that investigate the accuracy and impact of idea detection in classrooms. To evaluate the guidance, the researchers will conduct comparison studies that randomly assign students to conditions to identify the most promising adaptive guidance designs for detected ideas. All materials are customizable using open platform authoring tools.

Using Natural Language Processing to Inform Science Instruction (Collaborative Research: Riordan)

This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. The project will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic.

Lead Organization(s): 
Award Number: 
2101670
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Often, middle school science classes do not benefit from participation of underrepresented students because of language and cultural barriers. This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. This work continues a partnership among the University of California, Berkeley, Educational Testing Service, and science teachers and paraprofessionals from six middle schools enrolling students from diverse racial, ethnic, and language groups whose cultural experiences may be neglected in science instruction. The partnership will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic. The partnership leverages a web-based platform to implement adaptive guidance designed by teachers that feature dialog and peer interaction. Further, the platform features teacher tools that can detect when a student needs additional help and alert the teacher. Teachers using the technology will be able to track and respond to individual student ideas, especially from students who would not often participate because of language and cultural barriers.

This project develops AI-based technology to help science teachers increase their impact on student science learning. The technology is aimed to provide accurate analysis of students' initial ideas and adaptive guidance that gets each student started on reconsidering their ideas and pursuing deeper understanding. Current methods in automated scoring primarily focus on detecting incorrect responses on test questions and estimating the overall knowledge level in a student explanation. This project leverages advances in natural language processing (NLP) to identify the specific ideas in student explanations for open-ended science questions. The investigators will conduct a comprehensive research program that pairs new NLP-based AI methods for analyzing student ideas with adaptive guidance that, in combination, will empower students to use their ideas as starting points for improving science understanding. To evaluate the idea detection process, the researchers will conduct studies that investigate the accuracy and impact of idea detection in classrooms. To evaluate the guidance, the researchers will conduct comparison studies that randomly assign students to conditions to identify the most promising adaptive guidance designs for detected ideas. All materials are customizable using open platform authoring tools.

DataX: Exploring Justice-Oriented Data Science with Secondary School Students

This project will develop an integrated, justice-oriented curriculum and a digital platform for teaching secondary students about data science in science and social studies classrooms. The platform will help students learn about data science using real-world data sets and problems. This interdisciplinary project will also help students meaningfully analyze real-world data sets, interpret social phenomena, and engage in social change.

Award Number: 
2101413
Funding Period: 
Thu, 07/01/2021 to Fri, 06/30/2023
Full Description: 

Understanding data is critical for informed citizens. Data science is a growing and emerging field that can incorporate statistics, mathematics, and computer science to develop disciplinary knowledge and address societal challenges. This project will develop an integrated, justice-oriented curriculum and a digital platform for teaching secondary students about data science in science and social studies classrooms. The platform will help students learn about data science using real-world data sets and problems. This project includes science and social studies teachers in the design of the resources and in testing them in secondary school classrooms. Research and development in data science education is needed to understand how students can learn more about the use of data in meaningful and authentic ways. This interdisciplinary project will also help students meaningfully analyze real-world data sets, interpret social phenomena, and engage in social change.

During a two-year project period, we aim to iteratively advance three design components of the DataX program: (a) a justice-oriented data science curriculum integrated in secondary science and social studies; (b) a web-based learning platform that extends the Common Online Data Analysis Platform (CODAP) to support collaboration and sophisticated data practices; and (c) pedagogical practices that involve learners to work collectively as community. The guiding research question is: What scaffolds and resources are necessary to support the co-development of data, disciplinary, and critical literacies in secondary classrooms? To address this, the project will use participatory design research with science and social studies teachers to develop and test the curriculum, the learning platform, and the pedagogical practices. The data collected will include qualitative sources gathered from participatory design workshops and classrooms, as well as quantitative data from questionnaires and system logs. Using the data, we examine students' data science skills, data dispositions, and social participation in collaborative data investigations.

Pages

Subscribe to Content Knowledge