Teacher Outcomes

Perceptual and Implementation Strategies for Knowledge Acquisition of Digital Tactile Graphics for Blind and Visually Impaired Students (Collaborative Research: Gorlewicz)

This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI.

Lead Organization(s): 
Award Number: 
1644538
Funding Period: 
Sun, 01/15/2017 to Tue, 12/31/2019
Full Description: 

Students with disabilities often have fewer opportunities for experiential learning, an important component of quality STEM education. With continued shifts toward the use of digital media to supplement instruction in STEM classrooms, much of the content remains inaccessible, particular for students with visual impairments. The promise of technology and use of tactile graphics is an effective, emerging innovation for providing more complete access to important information and materials. Tactile graphics are images that use raised surfaces to convey non-textual information such as maps, paintings, graphs and diagrams. Touchscreen-based smart devices allow visual information to be digitally and dynamically represented via tactile, auditory, visual, and kinesthetic feedback. Tactile graphic technology embedded in touchscreen devices can be leveraged to make STEM content more accessible to blind and visually impaired students.

This project will develop a learner-centered, perceptually-motivated framework addressing the requirements for students with blindness and visual impairments to access graphical content in STEM. Using TouchSense technology, the investigators will create instructional materials using tactile graphics and test them in a pilot classroom of both sighted and BVI students. The investigators will work with approximately 150 students with visual impairments to understand the kind of feedback that is most appropriate for specific content in algebra (coordinate plane), cell biology, and geography. Qualitative research methods will be used to analyze the video-based data set.

Perceptual and Implementation Strategies for Knowledge Acquisition of Digital Tactile Graphics for Blind and Visually Impaired Students (Collaborative Research: Stefik)

This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI.

Award Number: 
1644491
Funding Period: 
Sun, 01/15/2017 to Tue, 12/31/2019
Full Description: 

Students with disabilities often have fewer opportunities for experiential learning, an important component of quality STEM education. With continued shifts toward the use of digital media to supplement instruction in STEM classrooms, much of the content remains inaccessible, particular for students with visual impairments. The promise of technology and use of tactile graphics is an effective, emerging innovation for providing more complete access to important information and materials. Tactile graphics are images that use raised surfaces to convey non-textual information such as maps, paintings, graphs and diagrams. Touchscreen-based smart devices allow visual information to be digitally and dynamically represented via tactile, auditory, visual, and kinesthetic feedback. Tactile graphic technology embedded in touchscreen devices can be leveraged to make STEM content more accessible to blind and visually impaired students.

This project will develop a learner-centered, perceptually-motivated framework addressing the requirements for students with blindness and visual impairments to access graphical content in STEM. Using TouchSense technology, the investigators will create instructional materials using tactile graphics and test them in a pilot classroom of both sighted and BVI students. The investigators will work with approximately 150 students with visual impairments to understand the kind of feedback that is most appropriate for specific content in algebra (coordinate plane), cell biology, and geography. Qualitative research methods will be used to analyze the video-based data set.

Perceptual and Implementation Strategies for Knowledge Acquisition of Digital Tactile Graphics for Blind and Visually Impaired Students (Collaborative Research: Smith)

This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI.

Award Number: 
1644476
Funding Period: 
Sun, 01/15/2017 to Tue, 12/31/2019
Full Description: 

Students with disabilities often have fewer opportunities for experiential learning, an important component of quality STEM education. With continued shifts toward the use of digital media to supplement instruction in STEM classrooms, much of the content remains inaccessible, particular for students with visual impairments. The promise of technology and use of tactile graphics is an effective, emerging innovation for providing more complete access to important information and materials. Tactile graphics are images that use raised surfaces to convey non-textual information such as maps, paintings, graphs and diagrams. Touchscreen-based smart devices allow visual information to be digitally and dynamically represented via tactile, auditory, visual, and kinesthetic feedback. Tactile graphic technology embedded in touchscreen devices can be leveraged to make STEM content more accessible to blind and visually impaired students.

This project will develop a learner-centered, perceptually-motivated framework addressing the requirements for students with blindness and visual impairments to access graphical content in STEM. Using TouchSense technology, the investigators will create instructional materials using tactile graphics and test them in a pilot classroom of both sighted and BVI students. The investigators will work with approximately 150 students with visual impairments to understand the kind of feedback that is most appropriate for specific content in algebra (coordinate plane), cell biology, and geography. Qualitative research methods will be used to analyze the video-based data set.

Perceptual and Implementation Strategies for Knowledge Acquisition of Digital Tactile Graphics for Blind and Visually Impaired Students (Collaborative Research: Giudice)

This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI.

Lead Organization(s): 
Award Number: 
1644471
Funding Period: 
Sun, 01/15/2017 to Tue, 12/31/2019
Full Description: 

Students with disabilities often have fewer opportunities for experiential learning, an important component of quality STEM education. With continued shifts toward the use of digital media to supplement instruction in STEM classrooms, much of the content remains inaccessible, particular for students with visual impairments. The promise of technology and use of tactile graphics is an effective, emerging innovation for providing more complete access to important information and materials. Tactile graphics are images that use raised surfaces to convey non-textual information such as maps, paintings, graphs and diagrams. Touchscreen-based smart devices allow visual information to be digitally and dynamically represented via tactile, auditory, visual, and kinesthetic feedback. Tactile graphic technology embedded in touchscreen devices can be leveraged to make STEM content more accessible to blind and visually impaired students.

This project will develop a learner-centered, perceptually-motivated framework addressing the requirements for students with blindness and visual impairments to access graphical content in STEM. Using TouchSense technology, the investigators will create instructional materials using tactile graphics and test them in a pilot classroom of both sighted and BVI students. The investigators will work with approximately 150 students with visual impairments to understand the kind of feedback that is most appropriate for specific content in algebra (coordinate plane), cell biology, and geography. Qualitative research methods will be used to analyze the video-based data set.

CAREER: Designing and Enacting Mathematically Captivating Learning Experiences for High School Mathematics

This project explores how secondary mathematics teachers can plan and enact learning experiences that spur student curiosity, captivate students with complex mathematical content, and compel students to engage and persevere (referred to as "mathematically captivating learning experiences" or "MCLEs"). The study will examine how high school teachers can design lessons so that mathematical content itself is the source of student intrigue, pursuit, and passion.

Lead Organization(s): 
Award Number: 
1652513
Funding Period: 
Wed, 02/15/2017 to Mon, 01/31/2022
Full Description: 

This design and development project explores how secondary mathematics teachers can plan and enact learning experiences that spur student curiosity, captivate students with complex mathematical content, and compel students to engage and persevere (referred to as "mathematically captivating learning experiences" or "MCLEs"). This study is important because of persistent disinterest by secondary students in mathematics in the United States. This study will examine how high school teachers can design lessons so that mathematical content itself is the source of student intrigue, pursuit, and passion. To do this, the content within mathematical lessons (both planned and enacted) is framed as mathematical stories and the felt tension between how information is revealed and withheld from students as the mathematical story unfolds is framed as its mathematical plot. The Mathematical Story Framework (Dietiker, 2013, 2015) foregrounds both the coherence (does the story make sense?) and aesthetic (does it stimulate anticipation for what is to come, and if so, how?) dimensions of mathematics lessons. The project will generate principles for lesson design usable by teachers in other settings and exemplar lessons that can be shared.

Specifically, this project draws from prior curriculum research and design to (a) develop a theory of teacher MCLE design and enactment with the Mathematical Story Framework, (b) increase the understanding(s) of the aesthetic nature of mathematics curriculum by both researchers and teachers, and (c) generate detailed MCLE exemplars that demonstrate curricular coherence, cognitive demand, and aesthetic dimensions of mathematical lessons. The project is grounded in a design-based research framework for education research. A team of experienced high school teachers will design and test MCLEs (four per teacher) with researchers through three year-long cycles. Prior to the first cycle, data will be collected (interview, observations) to record initial teacher curricular strategies regarding student dispositions toward mathematics. Then, a professional development experience will introduce the Mathematical Story Framework, along with other curricular frameworks to support the planning and enacting of lessons (i.e., cognitive demand and coherence). During the design cycles, videotaped observations and student aesthetic measures (surveys and interviews) for both MCLEs and a non-MCLEs (randomly selected to be the lesson before or after the MCLE) will be collected to enable comparison. Also, student dispositional measures, collected at the beginning and end of each cycle, will be used to learn whether and how student attitudes in mathematics change over time. Of the MCLEs designed and tested, a sample will be selected (based on aesthetic and mathematical differences) and developed into models, complete with the rationale for and description of aesthetic dimensions.

CAREER: Investigating Changes in Students' Prior Mathematical Reasoning: An Exploration of Backward Transfer Effects in School Algebra

This project explores "backward transfer", or the ways in which new learning impacts previously-established ways of reasoning. The PI will observe and evaluate algebra I students as they learn quadratic functions and examine how different kinds of instruction about the new concept of quadratic functions helps or hinders students' prior mathematical knowledge of the previous concept of linear functions.

Lead Organization(s): 
Award Number: 
1651571
Funding Period: 
Sat, 07/01/2017 to Thu, 06/30/2022
Full Description: 

As students learn new mathematical concepts, teachers need to ensure that prior knowledge and prior ways understanding are not negatively affected. This award explores "backward transfer", or the ways in which new learning impacts previously-established ways of reasoning. The PI will observe and evaluate students in four Algebra I classrooms as they learn quadratic functions. The PI will examine how different kinds of instruction about the new concept of quadratic functions helps or hinders students' prior mathematical knowledge of the previous concept of linear functions. More generally, this award will contribute to the field of mathematics education by expanding the application of knowledge transfer, moving it from only a forward focused direction to include, also, a backward focused direction. An advisory board of scholars with expertise in mathematics education, assessment, social interactions, quantitative reasoning and measurement will support the project. The research will occur in diverse classrooms and result in presentations at the annual conferences of national organizations, peer-reviewed publications, as well as a website for teachers which will explain both the theoretical model and the findings from the project. An undergraduate university course and professional development workshops using video data from the project are also being developed for pre-service and in-service teachers. Ultimately, the research findings will generate new knowledge and offer guidance to elementary school teachers as they prepare their students for algebra.

The research involves three phases. The first phase includes observations and recordings of four Algebra I classrooms and will test students' understanding of linear functions before and after the lessons on quadratic functions. This phase will also include interviews with students to better understand their reasoning about linear function problems. The class sessions will be coded for the kind of reasoning that they promote. The second phase of the project will involve four cycles of design research to create quadratic and linear function activities that can be used as instructional interventions. In conjunction with this phase, pre-service teachers will observe teaching sessions through a course that will be offered concurrently with the design research. The final phase of the project will involve pilot-applied research which will test the effects of the instructional activities on students' linear function reasoning in classroom settings. This phase will include treatment and control groups and further test the hypotheses and instructional products developed in the first two phases.

Readiness through Integrative Science and Engineering: Refining and Testing a Co-constructed Curriculum Approach with Head Start Partners

Building upon prior research on Head Start curriculum, this phase of Readiness through Integrative Science and Engineering (RISE) will be expanded to include classroom coaches and community experts to enable implementation and assessment of RISE in a larger sample of classrooms. The goal is to improve school readiness for culturally and linguistically diverse, urban-residing children from low-income families, and the focus on science, technology, and engineering will address a gap in early STEM education.

Lead Organization(s): 
Award Number: 
1621161
Funding Period: 
Sat, 10/01/2016 to Wed, 09/30/2020
Full Description: 

Readiness through Integrative Science and Engineering (RISE) is a late stage design and development project that will build upon the results of an earlier NSF-funded design and development study in which a co-construction process for curriculum development was designed by a team of education researchers with a small group of Head Start educators and parent leaders. In this phase, the design team will be expanded to include Classroom Coaches and Community Experts to enable implementation and assessment of the RISE model in a larger sample of Head Start classrooms. In this current phase, an iterative design process will further develop the science, technology, and engineering curricular materials as well continue to refine supports for teachers to access families' funds of knowledge related to science, technology, and engineering in order to build on children's prior knowledge as home-school connections. The ultimate goal of the project is to improve school readiness for culturally and linguistically diverse, urban-residing children from low-income families who tend to be underrepresented in curriculum development studies even though they are most at-risk for later school adjustment difficulties. The focus on science, technology, and engineering will address a gap in early STEM education.

The proposed group-randomized design, consisting of 90 teachers/classrooms (45 RISE/45 Control), will allow for assessment of the impact of a 2-year RISE intervention compared with a no-intervention control group. Year 1 will consist of recruitment, induction, and training of Classroom Coaches and Community Experts in the full RISE model, as well as preparation of integrative curricular materials and resources. In Year 2, participating teachers will implement the RISE curriculum approach supported by Classroom Coaches and Community Experts; data on teacher practice, classroom quality, and implementation fidelity will be collected, and these formative assessments will inform redesign and any refinements for Year 3. During Year 2, project-specific measures of learning for science, technology, and engineering concepts and skills will also be tested and refined. In Year 3, pre-post data on teachers (as in Year 2) as well as on 10 randomly selected children in each classroom (N = 900) will be collected. When child outcomes are assessed, multilevel modeling will be used to account for nesting of children in classrooms. In addition, several moderators will be examined in final summative analyses (e.g., teacher education, part or full-day classroom, parent demographics, implementation fidelity). At the end of this project, all materials will be finalized and the RISE co-construction approach will be ready for scale-up and replication studies in other communities.

Algebra Project Mathematics Content and Pedagogy Initiative

This project will scale up, implement, and assess the efficacy of interventions in K-12 mathematics education based on the well-established Algebra Project (AP) pedagogical framework, which seeks to improve performance and participation in mathematics of students in distressed school districts, particularly low-income students from underserved populations.

Award Number: 
1621416
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

Algebra continues to serve as a gatekeeper and potential barrier for high school students. The Algebra Project Mathematics Content and Pedagogy Initiative (APMCPI) will scale up, implement and assess the efficacy of interventions in K-12 mathematics education based on the well-established Algebra Project (AP) pedagogical framework. The APMCPI project team is comprised of four HBCUs (Virginia State University, Dillard University, Xavier University, Lincoln University), the Southern Initiative Algebra Project (SIAP), and four school districts that are closely aligned with partner universities. The purpose of the Algebra Project is to improve performance and participation in mathematics by members of students in distressed school districts, particularly those with a large population of low-income students from underserved populations including African American and Hispanics. The project will provide professional development and implement the Algebra Project in four districts and study the impact on student learning. The research results will inform the nation's learning how to improve mathematics achievement for all children, particularly those in distressed inner-city school districts.

The study builds on a prior pilot project with a 74% increase in students who passed the state exam. In the early stages of this project, teachers in four districts closely associated with the four universities will receive Algebra Project professional development in Summer Teacher Institutes with ongoing support during the academic year, including a community development plan. The professional development is designed to help teachers combine mathematical problem solving with context-rich lessons, which both strengthen and integrate teachers' understanding of key concepts in mathematics so that they better engage their students. The project also will focus on helping teachers establish a framework for mathematically substantive, conceptually-rich and experientially-grounded conversations with students. The first year of the study will begin a longitudinal quasi-experimental, explanatory, mixed-method design. Over the course of the project, researchers will follow cohorts who are in grade-levels 5 through 12 in Year 1 to allow analyses across crucial transition periods - grades 5 to 6; grades 8 to 9; and grades 12 to college/workforce. Student and teacher data will be collected in September of Project Year 1, and in May of each project year, providing five data points for each student and teacher participant. Student data will include student attitude, belief, anxiety, and relationship to mathematics and science, in addition to student learning outcome measures. Teacher data will include content knowledge, attitudes and beliefs, and practices. Qualitative data will provide information on the implementation in both the experimental and control conditions. Analysis will include hierarchical linear modeling and multivariate analysis of covariance.

Analysis of Effective Science Coaching: What, Why and How

This project will conduct an in-depth analysis of instructional coaching by analyzing archived video-recorded coaching sessions with middle and high school science teachers. The goal of the project is to analyzing the videos and previously collected quantitative outcome data to create descriptive profiles of instructional coaching and identify which key coaching elements lead to desired teacher and student outcomes.

Lead Organization(s): 
Award Number: 
1621308
Funding Period: 
Sat, 10/01/2016 to Mon, 09/30/2019
Full Description: 

This Exploratory project will conduct an in-depth analysis of instructional coaching by analyzing 520 hours of archived video-recorded coaching sessions with 75 middle and high school science teachers in grades 6-12 collected in a U.S. Department of Education IES-funded coaching research study. The goal of the project is to "unpack" the coaching intervention by analyzing the videos and previously collected quantitative outcome data to (a) create descriptive profiles of instructional coaching and (b) identify which key coaching elements ("active ingredients") lead to desired teacher and student outcomes.

Following a design-based research approach, relying on iterative feedback and using data saturation process to analyze data, the project will translate theorized, conceptual characteristics of coaching into empirical models to guide future coaching research and practical guidance through identification of critical elements needed for coaching to work.

Proportions Playground: A Dynamic World to Support Teachers' Proportional Reasoning

This project focuses on the creation of the initial functionality for a dynamic microworld, Proportions Playground, designed to support teachers in developing a coherent understanding of proportional reasoning. The Proportions Playground project seeks to both develop a unique pilot software application for the iPad and explore how it supports teachers in developing a coherent, robust definition of proportions.

Award Number: 
1621290
Funding Period: 
Thu, 09/01/2016 to Thu, 02/28/2019
Full Description: 

Proportions are a critical topic in mathematics that is simultaneously complicated and over-simplified in typical instruction. Current research undertaken by the research team suggests that the over-simplification is related to limitations in teachers' understandings of proportional relationships. Presenting proportions in a dynamic environment offers teachers the opportunity to create key developmental understandings related to this area of mathematics. This project focuses on the creation of the initial functionality for a dynamic microworld, Proportions Playground, designed to support teachers in developing a coherent understanding of proportional reasoning. Proportions Playground is conceptualized as a tool for supporting the development of coherent understandings by allowing teachers to interact in concrete ways with otherwise abstract ideas and by allowing teachers easy access to dynamic objects and other representations. It is meant to address the significant limitations for reasoning about the relationships between measurable aspects of two objects as well as in manipulating those relationships. Building from work currently underway, Proportions Playground will explore key areas in which there are opportunities for engaging teachers in the development of a coherent and robust understanding of proportional reasoning that extends beyond the typical "3 given, 1 unknown" proportion problem. This approach attempts to engage teachers in an array of dynamic, visually-rich sets of tasks designed to challenge teachers' preconceptions of proportions and to strengthen their connections between proportions and related areas of mathematics. This project is funded by the Discovery Research PreK-12 (DRK-12) and EHR Core Research (ECR) Programs. the DRK-12 program supports research and development on STEM education innovations and approaches to teaching, learning, and assessment. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field.

The Proportions Playground project seeks to both develop a unique pilot software application for the iPad and explore how it supports teachers in developing a coherent, robust definition of proportions. The software will be designed to support either numeric manipulation (e.g., graphing software) or geometric constructions (e.g., dynamic geometry software). Specifically, for this project the mathematics of interest will include the relationships between similarity and proportion and the nature of covariation. The research will focus on how teachers are developing a robust and coherent understanding of proportions and how the dynamic environment promotes such understandings. Working with six teacher advisors, the project will develop three task sets. Using teaching experiments and individual interviews, results will be used to refine the task sets. The revised task sets will be piloted with 40 teachers. Data will be collected on participants' thinking and any changes seen in the knowledge resources they are using. The researchers will be looking for factors that seem to impact teachers' thinking as well as evidence to support or deny the assertion that the Proportions Playground activities engage teachers in (a) different ways of reasoning about proportions and (b) support them in drawing from a wide array of resources so that coherence may be developed were the teachers to have a prolonged engagement with the tools. The project will rely on Epistemic Network Analysis to identify the connections between knowledge resources.

Pages

Subscribe to Teacher Outcomes